Skip to main content

FMEA Video: How To Perform a Failure Mode and Effects Analysis

FMEA stands for Failure Mode and Effects Analysis. This DMAIC tool is used to evaluate risk in a process. FMEA will help to improve the quality and safety of work tasks. Using this SigmaXL template will allow you to document a baseline for improvement and provide compelling data to confirm a need for changes to the current process. Detection level is critical to quantify the cost of poor quality.

You would never want to pass on a defect to a customer or create an environment that puts employees at a risk of injury. FMEA encourages a proactive approach when used to assess risk in newly designed products or processes. This tutorial demonstrates how to use SigmaXL software to record before and after risk levels. View video for more information on this technique.
FMEA is an acronym for Failure Mode and Effects Analysis. This video tutorial will teach you what is a Failure Mode and Effects Analysis, when to use FMEA, and show you a template available with SigmaXL software.

The goal of FMEA is to identify, quantify, evaluate and prioritize risk in a process. The risk may be present due to human error, or a lack of controls in a computer process. Ultimately, we want to reduce the possibility of the risk negatively impacting the customer or an employee. It is important to track your risk assessment in your DMAIC project and ensure that the implemented solution addresses possible failure modes. Your control plan should include actions to take if the risk is detected. Video presented by Lean Six Sigma

Used in DMAIC Phase(s). . . .

  • Analyze
  • Improve
  • Control


Source (http://leansixsigmasource.com)

Comments

Popular posts from this blog

John Crane's Type 28 Dry Gas Seals: How Does It Work?

How Does It Work? Highest Pressure Non-Contacting, Dry-Running Gas Seal Type 28 compressor dry-running gas seals have been the industry standard since the early 1980s for gas-handling turbomachinery. Supported by John Crane's patented design features, these seals are non-contacting in operation. During dynamic operation, the mating ring/seat and primary ring/face maintain a sealing gap of approximately 0.0002 in./5 microns, thereby eliminating wear. These seals eliminate seal oil contamination and reduce maintenance costs and downtime. John Crane's highly engineered Type 28 series gas seals incorporate patented spiral-groove technology, which provides the most efficient method for lifting and maintaining separation of seal faces during dynamic operation. Grooves on one side of the seal face direct gas inward toward a non-grooved portion of the face. The gas flowing across the face generates a pressure that maintains a minute gap between the faces, optimizing flui...