Skip to main content

John Crane's Type 28 Dry Gas Seals: How Does It Work?

How Does It Work?

Highest Pressure Non-Contacting, Dry-Running Gas Seal

Type 28 compressor dry-running gas seals have been the industry standard since the early 1980s for gas-handling turbomachinery. Supported by John Crane's patented design features, these seals are non-contacting in operation. During dynamic operation, the mating ring/seat and primary ring/face maintain a sealing gap of approximately 0.0002 in./5 microns, thereby eliminating wear.

These seals eliminate seal oil contamination and reduce maintenance costs and downtime.

John Crane's highly engineered Type 28 series gas seals incorporate patented spiral-groove technology, which provides the most efficient method for lifting and maintaining separation of seal faces during dynamic operation. Grooves on one side of the seal face direct gas inward toward a non-grooved portion of the face. The gas flowing across the face generates a pressure that maintains a minute gap between the faces, optimizing fluid film stiffness and providing the highest possible degree of protection against face contact. Riding only on the load support of a cushion of gas, the seal's film stiffness compensates for varying operating conditions by adjusting the gap and pressure generated to maintain face stability.
John Crane Type 28 seal designs include:
  • Type 28AT Advanced Technology: Designed to excel in low pressure applications, the 28AT is today's most widely used non-contacting, dry running gas seal. Its design pedigree stretches back over 30 years and it has been proven in use on many thousands of installations around the world. The versatility offered by the 28AT makes it ideal for a very wide variety of gas compressor applications.
  • Type 28XP High-Pressure: Offers all the features and benefits of the 28AT, but is optimized to provide reliable performance on higher pressure duties. The 28XP's increased chemical resistance and ability to operate over a wider temperature range has established it as an industry benchmark for reliability.
  • Type 28EXP Extreme High Pressure: John Crane's highly effective solution for sealing gas installations that involve extreme pressures. It has been proven in use in the most challenging and hostile environments and delivers rugged and reliable performance around the world.
  • Type 28ST Steam Turbine: The non-contacting, steam lubricated Type 28ST is an effective sealing solution for small to medium-sized general steam turbine applications. By combining proven rotating groove technology with a high-temperature capability that virtually eliminates leakage of steam along the shaft, it creates an excellent alternative to traditional sealing devices such as segmented carbon bushes and labyrinths.
  • Type 28VL Vaporizing Liquids: Uses the energy of the rotating equipment to vaporize process fluid at a controlled rate, creating a gas film that lubricates the seal faces in applications of extremely low temperature.
  •  

What Sets The Type 28 Series Apart?
  • Accurate centering and balancing: The Type 28 seal mating ring and sleeve use tolerance rings to provide precise centering and cushioning. The seal runs true with a dynamically balanced rotor assembly that eliminates vibration.
  • High-pressure support capability: A metal carrier in the Type 28XP seal controls distortions that can occur under high-pressure loads.
  • Low-drag ring assembly: A custom-fit o-ring and thrust ring set provides extremely low drag and uniform loading to the primary ring surface.
  • Reduced-stress drive points: Low-stress drive flats on the Type 28 seal eliminate stress riser pin holes found in other designs.

Comments

Popular posts from this blog

Why Pump Shafts Often Break at the Keyway Area

By NTS Pump shaft failure can lead to significant downtime and repair costs in industrial plants. One of the most common locations for pump shaft failure is at the keyway area. In this article, we will explore the reasons why pump shafts often break at the keyway and what can be done to prevent such failures. The keyway is a high-stress point (weakest point)  on the shaft, where a key is inserted to transmit torque between the shaft and the pump impeller or coupling. During operation, the keyway experiences cyclic loading that creates a bending moment in the shaft, which is concentrated in the keyway area. Over time, this cyclic loading can cause fatigue failure in the shaft material, leading to a fracture at the keyway. In addition to cyclic loading, other factors can contribute to shaft failure at the keyway. Improper keyway design or installation can lead to stress concentrations or inadequate clearance between the key and keyway . Misalignment or overloading can also cause ex...

Grounding brush discharge monitoring

In recognition of the possibility of static charge build up in condensing steam turbines, API 612 (2005) specifies that grounding brushes be installed. The electrical flow to ground through these brushes  be monitored and useful information can be extracted. This article carries excerpts from the paper, “Babbitted bearing health assessment” by John K Whalen of John Crane, Thomas D Hess of Chestnut Run, Jim Allen of Nova Chemicals and Jack Craighton of Schneider Electric. Grounding brushes take current from the rotor to ground so that a charge does not build up on the rotor to the point where it discharges to ground though the best path possible – which is usually the closest point between the rotor and stator which is usually (hopefully) the point of minimum film thickness in a bearing. Typically this point of minimum film thickness is found in the active thrust bearing (as will be shown later). Shaft grounding brushes serve two purposes. The brushes are able to transmit modest amo...

Failures in babbit bearings

  There are literally dozens of ways bearings can fail. Some of the more common include: • Babbitt fatigue • Babbitt wiping due to rotor to stator contact • Babbitt flow due to high operating temperatures • Foreign particle damage • Varnish build-up • Electrostatic discharge damage (frosting) • Electromagnetic discharge damage (Spark tracks) • Oil “burn” or additive plating due to high temperatures • Loss of bond between babbitt and base metal • Chemical attack • Pivot wear in tilting pad bearings • Unloaded pad flutter • Cavitation damage This is taken from a paper, Babbitted bearing health assessment" by John Whalen of John Crane, Thomas Hess of Rotating Machinery Group, Jim Allen of Nova Chemicals Corporation and Jack Craighton of Schneider Electric. Babbitt fatigue Babbitt fatigue is caused by dynamic loads on the babbitt surface. Typically in bearings of this type, the dynamic loads are caused by vibration and result in peak film pressure fluct...

Failure investigation, remedies, and mitigation of a centrifugal pump.

  BY LUIS INFANTE & RODOLFO ALVARADO. A high energy pump at a water injection station in El Furrial, Venezuela exhibited extremely high vibration levels prior to an overhaul. It then suffered a catastrophic failure during startup following overhaul. The hydrodynamic bundle, rotor, and drive end (DE) bearing suffered damage.   High energy pump for boiler feed water. Courtesy of Flowserve. This centrifugal pump is a 3,000 HP, double-case volute, boiler feed water pump type. It has nine stages, outputs 750 gpm of water with suction pressure 1800 psi and discharge pressure 5250 psi. Rated speed was increased from 6000 to 6600 RPM to enhance the hydraulic performance. However, the pump’s actual discharge pressure was about 4,500 psi, well below the target value of 5,000 psi. The coupling was reportedly poorly fitted. The increased RPM created rotordynamic concerns of getting closer to a critical speed, thus the operator wanted to know about the synchronous regime. The...