Skip to main content

How to clean superalloy parts? brazing technique removes oxides in deep, narrow cracks

Investment cast parts used in modern gas turbines are made of expensive superalloys that can withstand extreme thermal, mechanical and chemical loads experienced by hot gas path components. Parts with hundreds of thousands of service hours, however, become severely oxidized.

To improve efficiency and reduce the risk of unscheduled outages, these parts must either be periodically refurbished using a brazing repair process or replaced. To facilitate brazing repair, all oxidation, sulfidation and hot corrosion must be removed from surfaces, cooling passages and deep, narrow cracks.
Oxide scale typically forms on the mating faces of cracks that occur in hot gas path areas. These cracks become packed full of scale. It is the goal of the service shop to repair these components by filling the cracks with a braze alloy.
Unfortunately, braze alloy cannot flow into cracks filled with oxide scale.

Figure 1: By varying the pressure between positive, negative, and atmospheric levels, the Dynamic FIC system “pulses” HF in and out of cooling channels, deep cracks and small holes to more effectively clean oxidized hard-to-reach areas.

To complicate matters, nickel- (Ni) and cobalt-based (Co) superalloys usually contain aluminum (Al) and titanium (Ti) to improve strength. The presence of these elements causes the resulting scale to contain complex crystalline structures that are difficult to remove.
“At the narrow tip of a crack, scale forms during service, which occupies a larger volume than the metal from which it formed,” said Donald Bell, Chief Engineer at a gas turbine repair facility. “You cannot fill the crack with braze alloy if it is already filled with oxide scale.”
Traditionally, fluoride ion cleaning is performed at atmospheric pressure to remove oxidants. However, metallurgical studies have shown that it only works well when cleaning wide cracks.
What is known as Dynamic Fluoride Ion Cleaning (DFIC), on the other hand, has the ability to clean narrower cracks by cycling between negative, atmospheric, and positive pressure in preparation for brazing.
The DFIC process, also known as Hydrogen Fluoride (HF) Ion Cleaning, results from the reaction of fluorine with various oxides. HF gas can be toxic if it escapes into the atmosphere. However, improvements in gas monitoring sensors and digital electronics have made it safe for parts cleaning.
At temperatures greater than 1,750°F, the fluoride ion reacts with oxides that have formed on the crack faces, converting them to gaseous metal fluorides. This allows them to depart through the off-gas stream of the reactor.
There were, however, drawbacks to fluoride ion cleaning processes developed in the 1970s, which utilized fluoride compounds in powdered form and operated at normal atmospheric pressure. Besides having difficulty penetrating cracks, the early processes relied on a single charge of powder to produce HF gas.
“When compounds in powdered form, such as chromium-fluoride, aluminum-fluoride, or polytetrafluoroethylene are used, the cleaning process often has to be repeated,” said Bell.
With DFIC, reaction temperature, fluorine concentration, pressure level and duration are independently controlled variables. The control system can be programmed to clean specific alloy types,various widths of cracks, levels of scale and oxidation.
During cleaning, HF and H2 gas are gradually introduced. A typical cleaning cycle may begin as 94% to 96% hydrogen, but may be changed to an 82:18 Hto HF ratio depending on the substrate material. Some systems can clean at sub-atmospheric pressures from 100 to 650 Torr while remaining at processing temperature. By varying pressure between positive, negative and atmospheric levels, the system pulses HF in and out of cooling channels, cracks and small holes (Figure).
“We use DFIC equipment to modulate pressure from low to high, to pneumatically push the fluoride ions down into the tips of the cracks and hold them there for a while,” said Bell. “By performing the process under vacuum, aluminum and titanium are depleted from the substrate, creating a denuded zone approximately 0.0005” deep.”
This provides a buffer as residual oxygen in the vacuum chamber that can re-oxidize a clean part during furnace brazing. The denuded zone allows enough time to get the braze filler to flow and wick into the cracks before reoxidation occurs.
Cobalt-based alloys can react with fluorine to create a chromium fluoride film. Chromium fluoride is the most refractory (temperature resistant) compound of all the metal fluorides. As a result, it does not volatize at the usual temperatures used in DFIC.
Without the presence of a vacuum, the part must be moved to a vacuum furnace to be subjected to higher tempera ture and lower pressure required until the chromium fluoride volatilizes. However, the resulting fluorides can contaminate the brazing furnace or the vacuum pump. According to Bell, at pressures of about 150 Torr absolute, chromium fluoride will remain gaseous, so cleaning can be done without depositing a residue on the joint.
In addition, this dual vacuum process uses less HF because oxides are volatilized at a lower temperature and concentration of HF when performed sub-atmospherically. This cuts the risk of inter granular attack (IGA), which could otherwise chemically alter the microstructure of the metal being cleaned.

Author
Rob Kornfeld is President of Hi-Tech Furnace Systems, Inc. of Shelby Township, MI, a provider of Dynamic Fluoride Ion Cleaning, Chemical Vapor Deposition and Vapor Phase Coating systems. For more information, visit www.hi-techfurnace.com.

Comments

Popular posts from this blog

Dry Gas Seal Failure Modes

BY BHUSHAN NIKAM. Invented in the mid-20th century and typically equipped in process gas centrifugal, dry gas screw compressors and expanders, dry gas seals (DGS) are the preferred gas lubricated dry seal solutions available on the market. They have become the standard for new machines. DGS are robust, simple, consume less power, and are more efficient in reducing leakage than their predecessor. Various configurations such as tandem with and without an intermediate labyrinth ( Figure 1 ), single ( Figure 2 ), and double ( Figure 3 ) are available & shall be selected based on process requirements. In this article, we discuss the various DGS failure modes and how they should be addressed:  PRESSURIZED HOLD/STANDBY Pressurized hold, also called settle-out condition, occurs when the compressor remains at a standstill, but the casing is pressurized. If an alternate process gas lacks sufficient pressure and flow, process gas enters the seal cavity through the process labyrinth ...

Understanding the Causes of Pump Shaft Breakage

By NTS. Pump shafts are essential in many industrial and commercial applications, providing the necessary mechanical force to move fluids through pipelines and process systems. However, when a pump shaft breaks, it can cause significant downtime, production losses, and safety risks. In this article, we will explore the common causes of pump shaft breakage and how to prevent it from occurring. 1. Excessive Load  The most common cause of pump shaft breakage is excessive load. When a pump is overloaded, it places a significant amount of stress on the shaft, causing it to bend, warp, or break. Overloading can be caused by a variety of factors such as a clogged discharge line, worn impeller, or damaged bearings. Proper maintenance, regular inspections, and monitoring of the pump's performance can help prevent overloading. 2. Misalignment  If the pump and motor are not properly aligned, it can cause stress on the pump shaft and lead to breakage. Misalignment can occur due ...

Technical questions with answers on gas turbines

By NTS. What is a gas turbine? A gas turbine is an engine that converts the energy from a flow of gas into mechanical energy. How does a gas turbine work? Gas turbines work on the Brayton cycle, which involves compressing air, mixing it with fuel, and igniting the mixture to create a high-temperature, high-pressure gas. This gas expands through a turbine, which generates mechanical energy that can be used to power a variety of machines and equipment. What are the different types of gas turbines? There are three main types of gas turbines: aeroderivative , industrial, and heavy-duty. Aeroderivative gas turbines are used in aviation and small-scale power generation. Industrial gas turbines are used in power generation and other industrial applications. Heavy-duty gas turbines are typically used in large power plants. What are the main components of a gas turbine? The main components of a gas turbine include the compressor, combustion chamb...

Pump Shaft Breakage: Case Studies and Solutions

By NTS Pump shaft breakage is a common issue that can cause costly downtime and repairs in various industries. In this article, we will explore several case studies of pump shaft breakage and the solutions implemented to prevent future failures. Case Study 1: Chemical Processing Plant A chemical processing plant experienced repeated pump shaft breakages in their cooling water pumps. Investigation revealed that the pumps were not properly aligned with the motor and had excessive vibration due to the misalignment. This caused the pump shaft to fatigue and break over time. The problem was resolved by realigning the pumps and installing vibration monitoring equipment to detect any future misalignment or excessive vibration. Case Study 2: Wastewater Treatment Plant A wastewater treatment plant had issues with pump shaft breakage in their sludge pumps. The pumps were designed with a straight shaft and lacked a flexible coupling, causing excessive stress and vibration on the pump sha...

FACTORS IMPACTING COMPRESSOR SURGE

BY AMIN ALMASI. Surge can be a major challenge for turbo compressors. Operation in the surge area will result in instability, exposing the machine to destructive stresses and forces, high vibration, and even serious damage. Surge during shutdown (trip) has been reported for many turbo-compressors. This is particularly possible if the machine operates at high head and low flow, immediately before the trip, when the operating point can move toward the surge line and even pass it during coast-down (when the turbo-compressor reduces flowrate). When a turbo-compressor experiences a serious alarm, an emergency shutdown is usually initiated. But an immediate shutdown could result in a surge. In this case, the surge happens shortly after the shutdown (trip) and at a high energy level. This could be a surge at a high head (operating point could pass the surge line at high head). In many cases, there are advantages to not removing the driving power from the turbocompressor (tripping) immediately...