Skip to main content

WHAT IS THE ULTRASONIC IN-LINE INSPECTION (ILI) PIGGING?

In-line inspection (ILI) of pipelines has established itself as the most efficient tool for evaluating the condition of a pipeline and an indispensable part of pipeline integrity management. Historically, there have been two major technologies used in in-line inspection for corrosion, the magnetic flux leakage (MFL) and ultrasonics (UT), each having their distinct properties and fields of application. 



Ultrasonic (UT) ILI has always provided unique quality of information about the pipelines, rendering highest accuracy and tightest measurement tolerances. In the 1990s ultrasonic tools for detection of cracks have become available.

Ultrasonic measurement principle: ultrasonic transducer slides along the internal surface of the pipe wall measuring distance to the wall and the wall thickness (top), yielding the stand-off and the wall thickness (bottom two B-scans)

Ultrasonic (UT) based In Line Inspection tools for all types of liquid filled pipelines.

This includes Ultrasonic MultiChannel ILI’s (UT-MC) for high speed long length pipeline corrosion (metal loss) inspection.

Ultrasonic Rotary ILI’s (UT-R) for super high resolution in short to medium length pipelines (<30km) for corrosion (metal loss) inspection. Recommended for old and/or severely corroded pipelines to provide a higher level of detail and accuracy in corroded areas.


Ultrasonic Crack Detection and Sizing ILI’s (CS) for detecting and measurements of axial (ERW) and circumferential cracks larger than 1.0 mm. The Ultrasonic ILI’s require a liquid in the pipeline in order to operate (diesel, crude, water, Naphtha, etc.) and offer direct and accurate measurements in mm/thousand of an inch, as opposed to volumetric measurements in % of other types of ILI’s, thereby offering greater detail and accuracy.

All Ultrasonic ILI’s are tested and proven in full scale test loops and infinity loops to ensure performance as a minimum comply with the POF-2016 standard ( POF specifications for In-line Inspection of Pipelines).

UT Intelligent Pigs can be used to inspect any diameter of pipelines, with any thickness and of virtually any type of material, such as:

  • Carbon Steel
  • Austenitic Steel
  • High-Density Polyethylene (HDPE)
  • HDPE or PE Lined
  • GRE/GRP pipelines
  • Subsea or Above Ground
  • Bare, Coated or Insulated
  • Cladded or lined pipelines

Read more: Ultrasonic In-Line Inspection ofPipelines, New Generation of Tools (Pdf)

  Source: https://www.dacon-inspection.com/

Comments

Popular posts from this blog

Dry Gas Seal Failure Modes

BY BHUSHAN NIKAM. Invented in the mid-20th century and typically equipped in process gas centrifugal, dry gas screw compressors and expanders, dry gas seals (DGS) are the preferred gas lubricated dry seal solutions available on the market. They have become the standard for new machines. DGS are robust, simple, consume less power, and are more efficient in reducing leakage than their predecessor. Various configurations such as tandem with and without an intermediate labyrinth ( Figure 1 ), single ( Figure 2 ), and double ( Figure 3 ) are available & shall be selected based on process requirements. In this article, we discuss the various DGS failure modes and how they should be addressed:  PRESSURIZED HOLD/STANDBY Pressurized hold, also called settle-out condition, occurs when the compressor remains at a standstill, but the casing is pressurized. If an alternate process gas lacks sufficient pressure and flow, process gas enters the seal cavity through the process labyrinth ...

Understanding the Causes of Pump Shaft Breakage

By NTS. Pump shafts are essential in many industrial and commercial applications, providing the necessary mechanical force to move fluids through pipelines and process systems. However, when a pump shaft breaks, it can cause significant downtime, production losses, and safety risks. In this article, we will explore the common causes of pump shaft breakage and how to prevent it from occurring. 1. Excessive Load  The most common cause of pump shaft breakage is excessive load. When a pump is overloaded, it places a significant amount of stress on the shaft, causing it to bend, warp, or break. Overloading can be caused by a variety of factors such as a clogged discharge line, worn impeller, or damaged bearings. Proper maintenance, regular inspections, and monitoring of the pump's performance can help prevent overloading. 2. Misalignment  If the pump and motor are not properly aligned, it can cause stress on the pump shaft and lead to breakage. Misalignment can occur due ...

5 Important Maintenance Metrics and How To Use Them

By  Bryan Christiansen,  Limble CMMS. Source : maintworld.com Effective maintenance of equipment is a critical factor in delivering quality operations that provide timely resources at a minimal cost. However, those in the maintenance field understand that equipment reliability does not come easy.  Organizations need to set quality benchmarks to measure the current effectiveness and predict future performance and use the data obtained to understand where to make improvements.   One way to do this is by using different maintenance metrics to understand the equipment performance. These metrics are very important as they can mean the difference between achieving the overall business goals and explaining how unexpected breakdowns caused yet another production delay.   Maintenance Metrics You Should Be Measuring What are the maintenance metrics? There are two categories of maintenance key performance indicators which include the leading and lagging indicators....

Top 8 Reasons for Mechanical Seal Failure and How to Prevent Them

Mechanical seals are critical components of pumps, responsible for maintaining a fluid-tight seal between the rotating shaft and the stationary pump housing. However, these seals can fail due to various factors, leading to leakage, reduced pump efficiency, and costly downtime. In this article, we will discuss the top reasons for mechanical seal failure in pumps and how to prevent them. 1-Improper Seal Selection Choosing the wrong mechanical seal can cause it to fail. Consider the following factors that can contribute to seal failure: • Chemical compatibility: All seal components, such as the seal faces and O-rings, must be compatible not only with the process fluid being pumped, but also with non-process fluids used for cleaning, steam, acid, and caustic flushes, etc. • Physical degradation: Using soft seal faces on abrasive liquids will not last. Shear-sensitive liquids, like chocolate, can break down and leave behind solids (such as cocoa powder) and force out liquids (like oil). • S...

Technical questions with answers on gas turbines

By NTS. What is a gas turbine? A gas turbine is an engine that converts the energy from a flow of gas into mechanical energy. How does a gas turbine work? Gas turbines work on the Brayton cycle, which involves compressing air, mixing it with fuel, and igniting the mixture to create a high-temperature, high-pressure gas. This gas expands through a turbine, which generates mechanical energy that can be used to power a variety of machines and equipment. What are the different types of gas turbines? There are three main types of gas turbines: aeroderivative , industrial, and heavy-duty. Aeroderivative gas turbines are used in aviation and small-scale power generation. Industrial gas turbines are used in power generation and other industrial applications. Heavy-duty gas turbines are typically used in large power plants. What are the main components of a gas turbine? The main components of a gas turbine include the compressor, combustion chamb...