Skip to main content

FACTORS IMPACTING COMPRESSOR SURGE

BY AMIN ALMASI.

Surge can be a major challenge for turbo compressors. Operation in the surge area will result in instability, exposing the machine to destructive stresses and forces, high vibration, and even serious damage.

Surge during shutdown (trip) has been reported for many turbo-compressors. This is particularly possible if the machine operates at high head and low flow, immediately before the trip, when the operating point can move toward the surge line and even pass it during coast-down (when the turbo-compressor reduces flowrate). When a turbo-compressor experiences a serious alarm, an emergency shutdown is usually initiated. But an immediate shutdown could result in a surge. In this case, the surge happens shortly after the shutdown (trip) and at a high energy level. This could be a surge at a high head (operating point could pass the surge line at high head).

In many cases, there are advantages to not removing the driving power from the turbocompressor (tripping) immediately by delaying for a few seconds so the anti-surge valve can be opened and the discharge pressure (head) can be sufficiently reduced. As soon as the trip is intended, the anti-surge is opened, and the compressor shutdown is implemented with a second or two delay.

Many alarms and malfunctions do not require an instantaneous shutdown. For example, a high bearing temperature and a high vibration (unless it reaches more than 10 times allowable levels). An exception is loss of lubrication oil where it could potentially be worse than a full load surge. A safety study helps determine if such a delay is allowable.

RATE OF SPEED REDUCTION

Another critical parameter is the rate of speed reduction (coast-down time) during trip/shutdown. For many turbocompressors, rapid speed reduction can cause surge to be reached sooner and at a higher head condition. This results in a high energy surge event.

Great care should be taken for gas turbine-driven compressors. As soon as the fuel supply to the gas turbine driver is cut-off, the power is eliminated to the driven turbo-compressor and the speed drops rapidly. Some installations maintain the fuel flow to the gas turbine driver for up to two seconds, while the anti-surge valve (turbo-compressor recycle valve) opens. This delay may generate a safety hazard.

The head-making capability of a turbo-compressor is reduced typically by the square of its running speed, while the pressure ratio is imposed by the upstream and downstream piping and facilities system. Therefore, the unit will surge if the anti-surge valve cannot provide fast pressure relief at the discharge system. The deceleration rate as a result of train inertia and energy dissipation is a decisive factor. The rate of pressure relief at discharge not only depends on the reaction time of the anti-surge valve, but also on the volume of gas enclosed in piping and other systems between the compressor and anti-surge valve.

Speed reduction is fast in aeroderivative gas turbines. An emergency shutdown of a two-shaft or aero-derivative gas turbine-driven compressor can be problematic since train inertia is low and train speed decreases rapidly in a trip. Roughly 20-30% speed reduction can be expected for an aeroderivative-driven machine in the first second after the shutdown. This results in around 50% reduction in head generation capability. An antisurge valve for such a compressor should be able to reduce the pressure across the turbo-compressor by about half during the same period. The worst-case scenario for an anti-surge system is an emergency shutdown of the gas turbine while the turbocompressor is operating at high pressure and close to surge.

Similar scenarios may be applicable for an electric motor trip. However, the inertia of a typical electric motor-driven train is much higher. A typical rotor assembly for an electric motor driver is relatively heavy and large, and a gear unit is often required. A typical electric motor-driven turbocompressor has three to seven times higher inertia compared to a two-shaft or aero-derivative train.

High-pressure gas trapped in the discharge system plays a major role in surge. Large volumes of pressurized gas need time to depressurize. The volume of pressurized, high-energy gas to be dissipated can be reduced by discharge check valve(s) located upstream of large headers or vessels that store significant amounts of high-pressure gas.
Fast-closing check valves are generally specified.


Anti-Surge Controller.

Challenging situations have been reported when the anti-surge valve loop is taken downstream of the aftercooler(s). Usually, in these cases, the discharge gas volume in the cooler and piping is too large and the anti-surge valve (recycle valve) cannot avoid a surge. An additional hot gas bypass valve is often required. This is a short recycle loop without any cooler that only operates for a very short time during trip or emergency.

Vent valves on the discharge piping can effectively reduce discharge pressure and stored energy that contributes to the severity of the surge. This is particularly useful in multi-section turbocompressor installations where recycling around the 2nd stage, for example, results in high-pressure gas being added to the 1st stage discharge energy. Venting can allow some gas from the 2nd stage to be removed. Such venting should only be used as the last resort. Most vent valves are small and can be opened rapidly.

Amin Almasi is a Chartered Professional Engineer in Australia and U.K. (M.Sc. and B.Sc. in mechanical engineering). He is a senior consultant specializing in rotating equipment, condition monitoring and reliability.

Turbomachinery International

Comments

Popular posts from this blog

Pump Shaft Breakage: Case Studies and Solutions

By NTS Pump shaft breakage is a common issue that can cause costly downtime and repairs in various industries. In this article, we will explore several case studies of pump shaft breakage and the solutions implemented to prevent future failures. Case Study 1: Chemical Processing Plant A chemical processing plant experienced repeated pump shaft breakages in their cooling water pumps. Investigation revealed that the pumps were not properly aligned with the motor and had excessive vibration due to the misalignment. This caused the pump shaft to fatigue and break over time. The problem was resolved by realigning the pumps and installing vibration monitoring equipment to detect any future misalignment or excessive vibration. Case Study 2: Wastewater Treatment Plant A wastewater treatment plant had issues with pump shaft breakage in their sludge pumps. The pumps were designed with a straight shaft and lacked a flexible coupling, causing excessive stress and vibration on the pump sha...

Understanding the Causes of Pump Shaft Breakage

By NTS. Pump shafts are essential in many industrial and commercial applications, providing the necessary mechanical force to move fluids through pipelines and process systems. However, when a pump shaft breaks, it can cause significant downtime, production losses, and safety risks. In this article, we will explore the common causes of pump shaft breakage and how to prevent it from occurring. 1. Excessive Load  The most common cause of pump shaft breakage is excessive load. When a pump is overloaded, it places a significant amount of stress on the shaft, causing it to bend, warp, or break. Overloading can be caused by a variety of factors such as a clogged discharge line, worn impeller, or damaged bearings. Proper maintenance, regular inspections, and monitoring of the pump's performance can help prevent overloading. 2. Misalignment  If the pump and motor are not properly aligned, it can cause stress on the pump shaft and lead to breakage. Misalignment can occur due ...

Top 8 Reasons for Mechanical Seal Failure and How to Prevent Them

Mechanical seals are critical components of pumps, responsible for maintaining a fluid-tight seal between the rotating shaft and the stationary pump housing. However, these seals can fail due to various factors, leading to leakage, reduced pump efficiency, and costly downtime. In this article, we will discuss the top reasons for mechanical seal failure in pumps and how to prevent them. 1-Improper Seal Selection Choosing the wrong mechanical seal can cause it to fail. Consider the following factors that can contribute to seal failure: • Chemical compatibility: All seal components, such as the seal faces and O-rings, must be compatible not only with the process fluid being pumped, but also with non-process fluids used for cleaning, steam, acid, and caustic flushes, etc. • Physical degradation: Using soft seal faces on abrasive liquids will not last. Shear-sensitive liquids, like chocolate, can break down and leave behind solids (such as cocoa powder) and force out liquids (like oil). • S...

Motor Failures: Common causes and solutions

Bearing failures Bearings are small compared to other major motor components, making them particularly vulnerable to damage and wear. It’s no surprise, then, that studies blame more than half of all motor failures on bearing malfunction, most of which result from too little or too much lubrication. The key to avoiding these conditions is to establish a lubrication program using bearing and motor manufacturer guidelines to determine the frequency and amount of lubrication for the motor application, duty (continuous or intermittent), environmental conditions, and bearing size. Another significant cause of bearing failure is misalignment, the effect of which increases by the cube of the change. For example, an alignment value that is twice the new installation tolerance will reduce bearing life by a factor of 8 (2^3). The solution is simple: align the motor and driven equipment to new or better installation tolerances. Bearing currents are typically caused by dissymmetry ...

5 Important Maintenance Metrics and How To Use Them

By  Bryan Christiansen,  Limble CMMS. Source : maintworld.com Effective maintenance of equipment is a critical factor in delivering quality operations that provide timely resources at a minimal cost. However, those in the maintenance field understand that equipment reliability does not come easy.  Organizations need to set quality benchmarks to measure the current effectiveness and predict future performance and use the data obtained to understand where to make improvements.   One way to do this is by using different maintenance metrics to understand the equipment performance. These metrics are very important as they can mean the difference between achieving the overall business goals and explaining how unexpected breakdowns caused yet another production delay.   Maintenance Metrics You Should Be Measuring What are the maintenance metrics? There are two categories of maintenance key performance indicators which include the leading and lagging indicators....