Skip to main content

Dry-Running Sealing Technology: Pump Applications (P2)

Solutions to Common Problems

The operation of a single contacting seal would be difficult with any of the identified problems. A single contacting seal relies on cooling and lubrication from the process liquid being sealed. Any interruption in the cooling and lubrication processes will result in damage to the seal and leakage to the environment.

The non-contacting, dry-running seal is a solution to many of the problems identified by users. An installation to a pump is illustrated in Figure 2. This type of pump seal technology does not require the circulation of liquid for cooling. Instead, a static heat of an inert gas is used to pressurize the space between the seals. Nitrogen gas in normally used to create the barrier between the process liquid and the environment. The gas barrier pressure is normally 20 to 30 psi/1.4 to 2 bar above the seal chamber pressure. 
The spiral groove geometry of the seal face is responsible for lift-off and separation of the seal faces during operation. Since the seal faces are not in contact when the shaft is rotating, the only heat that is generated is that of the shearing gas. For normal pump speeds, a temperature rise at the seal face would be 2ºF to 4ºF/-17ºC, compared with several hundred degrees for a contacting seal. This results in a very attractive sealing technology for heat sensitive liquids and those liquids being pumped near their vapor pressure.
This technology represents a solution for those problems that effect cooling and lubrication at the seal faces. These have been identified as loss of seal flush, dry run, start-up without venting, low NPSH and cavitation. Cavitation will also result in the vibration of equipment. The vibration limit for this sealing concept is 0.4 in./s (10 mm/s).

Non-contacting, gas lubricated seals can be used on a wide range of process liquids. If the process fluid contains more than 6% solids by volume, consult John Crane Engineering with specific details about the liquid being sealed. Designs are available for liquids with a concentration of solids to 20% by volume.

With a non-contacting, gas-lubricated seal, rubbing contact at the seal face has been eliminated, so the seal can be operated at the vapor pressure of the liquid being sealed. In addition, there is no limiting factor due to the pressure-velocity relationship and wear at the seal faces. The limiting factor in the application of the seal is pressure that has an effect on seal face deflection.

Dual pressurized, non-contacting, gas lubricated seals have been designed to fit oversized and small bore seal chambers. Oversized bore seal chambers allow for a larger cross section seal, which can handle greater pressures. This original gas seal for pumps, introduced over five years ago, is shown in Figure 2. Many existing pumps in the field have small bore seal chambers and do not require the same pressure capability as the Type 2800 seal. To meet this requirement, the Type 2800E shown in Figure 4 was designed. To meet the need for still higher pressures on pumping applications, with the ability to run dry, the Type 2800HP was designed. This seal fits the same space envelope as the Type 2800 seal and is being used in Petroleum Refining and other industries.
oversized
Benefits

Many users are still struggling to increase MTBPM. Plants that were constructed 20 to 30 years ago were not constructed to today’s more stringent specifications. Deficiencies exist in piping, foundation stiffness, proper NPSH, operations and installation. The competitive edge is being lost at older plants, due to higher costs of equipment ownership and lost production due to equipment down-time.

Non-contacting, gas-lubricated seals are a solution to improving the reliability and efficiency of rotating equipment. They have eliminated seal face wear, heat developed at the seal faces, and are designed to run dry. While trying to solve an emissions problem, this technology has revolutionized pumping systems.

The use of this technology and the absence of a liquid seal support system help to maintain a high degree of product quality, which is necessary in the pharmaceutical and biotech industries. The non-contacting, gas-lubricated seal technology is more forgiving of most operating problems than other seal technologies. The capability of this technology is substantially reducing the cost of ownership of equipment and reducing equipment down-time.

Seal designs shown are patent-protected.

Comments

Popular posts from this blog

Maintenance 4.0 Implementation Handbook (pdf)

WHAT IS MAINTENANCE 4.0? Industry 4.0 is a name given to the current trend of automation and data exchange in industrial technologies. It includes the Industrial Internet of things (IIoT), wireless sensors, cloud computing, artificial intelligence (AI) and machine learning. Industry 4.0 is commonly referred to as the fourth industrial revolution. Maintenance 4.0 is a machine-assisted digital version of all the things we have been doing for the past forty years as humans to ensure our assets deliver value for our organization. Maintenance 4.0 includes a holistic view of sources of data, ways to connect, ways to collect, ways to analyze and recommended actions to take in order to ensure asset function (reliability) and value (asset management) are digitally assisted. For example, traditional Maintenance 1.0 includes sending highly-trained specialists to collect machinery vibration analysis readings on pumps, motors and gearboxes. Maintenance 4.0 includes a wireless vibration sensor conne...

Technical questions with answers on gas turbines

By NTS. What is a gas turbine? A gas turbine is an engine that converts the energy from a flow of gas into mechanical energy. How does a gas turbine work? Gas turbines work on the Brayton cycle, which involves compressing air, mixing it with fuel, and igniting the mixture to create a high-temperature, high-pressure gas. This gas expands through a turbine, which generates mechanical energy that can be used to power a variety of machines and equipment. What are the different types of gas turbines? There are three main types of gas turbines: aeroderivative , industrial, and heavy-duty. Aeroderivative gas turbines are used in aviation and small-scale power generation. Industrial gas turbines are used in power generation and other industrial applications. Heavy-duty gas turbines are typically used in large power plants. What are the main components of a gas turbine? The main components of a gas turbine include the compressor, combustion chamb...

Top 8 Reasons for Mechanical Seal Failure and How to Prevent Them

Mechanical seals are critical components of pumps, responsible for maintaining a fluid-tight seal between the rotating shaft and the stationary pump housing. However, these seals can fail due to various factors, leading to leakage, reduced pump efficiency, and costly downtime. In this article, we will discuss the top reasons for mechanical seal failure in pumps and how to prevent them. 1-Improper Seal Selection Choosing the wrong mechanical seal can cause it to fail. Consider the following factors that can contribute to seal failure: • Chemical compatibility: All seal components, such as the seal faces and O-rings, must be compatible not only with the process fluid being pumped, but also with non-process fluids used for cleaning, steam, acid, and caustic flushes, etc. • Physical degradation: Using soft seal faces on abrasive liquids will not last. Shear-sensitive liquids, like chocolate, can break down and leave behind solids (such as cocoa powder) and force out liquids (like oil). • S...

Why Pump Shafts Often Break at the Keyway Area

By NTS Pump shaft failure can lead to significant downtime and repair costs in industrial plants. One of the most common locations for pump shaft failure is at the keyway area. In this article, we will explore the reasons why pump shafts often break at the keyway and what can be done to prevent such failures. The keyway is a high-stress point (weakest point)  on the shaft, where a key is inserted to transmit torque between the shaft and the pump impeller or coupling. During operation, the keyway experiences cyclic loading that creates a bending moment in the shaft, which is concentrated in the keyway area. Over time, this cyclic loading can cause fatigue failure in the shaft material, leading to a fracture at the keyway. In addition to cyclic loading, other factors can contribute to shaft failure at the keyway. Improper keyway design or installation can lead to stress concentrations or inadequate clearance between the key and keyway . Misalignment or overloading can also cause ex...

Pump Shaft Breakage: Case Studies and Solutions

By NTS Pump shaft breakage is a common issue that can cause costly downtime and repairs in various industries. In this article, we will explore several case studies of pump shaft breakage and the solutions implemented to prevent future failures. Case Study 1: Chemical Processing Plant A chemical processing plant experienced repeated pump shaft breakages in their cooling water pumps. Investigation revealed that the pumps were not properly aligned with the motor and had excessive vibration due to the misalignment. This caused the pump shaft to fatigue and break over time. The problem was resolved by realigning the pumps and installing vibration monitoring equipment to detect any future misalignment or excessive vibration. Case Study 2: Wastewater Treatment Plant A wastewater treatment plant had issues with pump shaft breakage in their sludge pumps. The pumps were designed with a straight shaft and lacked a flexible coupling, causing excessive stress and vibration on the pump sha...