Skip to main content

Dry-Running Sealing Technology: Pump Applications (P2)

Solutions to Common Problems

The operation of a single contacting seal would be difficult with any of the identified problems. A single contacting seal relies on cooling and lubrication from the process liquid being sealed. Any interruption in the cooling and lubrication processes will result in damage to the seal and leakage to the environment.

The non-contacting, dry-running seal is a solution to many of the problems identified by users. An installation to a pump is illustrated in Figure 2. This type of pump seal technology does not require the circulation of liquid for cooling. Instead, a static heat of an inert gas is used to pressurize the space between the seals. Nitrogen gas in normally used to create the barrier between the process liquid and the environment. The gas barrier pressure is normally 20 to 30 psi/1.4 to 2 bar above the seal chamber pressure. 
The spiral groove geometry of the seal face is responsible for lift-off and separation of the seal faces during operation. Since the seal faces are not in contact when the shaft is rotating, the only heat that is generated is that of the shearing gas. For normal pump speeds, a temperature rise at the seal face would be 2ºF to 4ºF/-17ºC, compared with several hundred degrees for a contacting seal. This results in a very attractive sealing technology for heat sensitive liquids and those liquids being pumped near their vapor pressure.
This technology represents a solution for those problems that effect cooling and lubrication at the seal faces. These have been identified as loss of seal flush, dry run, start-up without venting, low NPSH and cavitation. Cavitation will also result in the vibration of equipment. The vibration limit for this sealing concept is 0.4 in./s (10 mm/s).

Non-contacting, gas lubricated seals can be used on a wide range of process liquids. If the process fluid contains more than 6% solids by volume, consult John Crane Engineering with specific details about the liquid being sealed. Designs are available for liquids with a concentration of solids to 20% by volume.

With a non-contacting, gas-lubricated seal, rubbing contact at the seal face has been eliminated, so the seal can be operated at the vapor pressure of the liquid being sealed. In addition, there is no limiting factor due to the pressure-velocity relationship and wear at the seal faces. The limiting factor in the application of the seal is pressure that has an effect on seal face deflection.

Dual pressurized, non-contacting, gas lubricated seals have been designed to fit oversized and small bore seal chambers. Oversized bore seal chambers allow for a larger cross section seal, which can handle greater pressures. This original gas seal for pumps, introduced over five years ago, is shown in Figure 2. Many existing pumps in the field have small bore seal chambers and do not require the same pressure capability as the Type 2800 seal. To meet this requirement, the Type 2800E shown in Figure 4 was designed. To meet the need for still higher pressures on pumping applications, with the ability to run dry, the Type 2800HP was designed. This seal fits the same space envelope as the Type 2800 seal and is being used in Petroleum Refining and other industries.
oversized
Benefits

Many users are still struggling to increase MTBPM. Plants that were constructed 20 to 30 years ago were not constructed to today’s more stringent specifications. Deficiencies exist in piping, foundation stiffness, proper NPSH, operations and installation. The competitive edge is being lost at older plants, due to higher costs of equipment ownership and lost production due to equipment down-time.

Non-contacting, gas-lubricated seals are a solution to improving the reliability and efficiency of rotating equipment. They have eliminated seal face wear, heat developed at the seal faces, and are designed to run dry. While trying to solve an emissions problem, this technology has revolutionized pumping systems.

The use of this technology and the absence of a liquid seal support system help to maintain a high degree of product quality, which is necessary in the pharmaceutical and biotech industries. The non-contacting, gas-lubricated seal technology is more forgiving of most operating problems than other seal technologies. The capability of this technology is substantially reducing the cost of ownership of equipment and reducing equipment down-time.

Seal designs shown are patent-protected.

Comments

Popular posts from this blog

Top 8 Reasons for Mechanical Seal Failure and How to Prevent Them

Mechanical seals are critical components of pumps, responsible for maintaining a fluid-tight seal between the rotating shaft and the stationary pump housing. However, these seals can fail due to various factors, leading to leakage, reduced pump efficiency, and costly downtime. In this article, we will discuss the top reasons for mechanical seal failure in pumps and how to prevent them. 1-Improper Seal Selection Choosing the wrong mechanical seal can cause it to fail. Consider the following factors that can contribute to seal failure: • Chemical compatibility: All seal components, such as the seal faces and O-rings, must be compatible not only with the process fluid being pumped, but also with non-process fluids used for cleaning, steam, acid, and caustic flushes, etc. • Physical degradation: Using soft seal faces on abrasive liquids will not last. Shear-sensitive liquids, like chocolate, can break down and leave behind solids (such as cocoa powder) and force out liquids (like oil). • S...

Dry Gas Seal Failure Modes

BY BHUSHAN NIKAM. Invented in the mid-20th century and typically equipped in process gas centrifugal, dry gas screw compressors and expanders, dry gas seals (DGS) are the preferred gas lubricated dry seal solutions available on the market. They have become the standard for new machines. DGS are robust, simple, consume less power, and are more efficient in reducing leakage than their predecessor. Various configurations such as tandem with and without an intermediate labyrinth ( Figure 1 ), single ( Figure 2 ), and double ( Figure 3 ) are available & shall be selected based on process requirements. In this article, we discuss the various DGS failure modes and how they should be addressed:  PRESSURIZED HOLD/STANDBY Pressurized hold, also called settle-out condition, occurs when the compressor remains at a standstill, but the casing is pressurized. If an alternate process gas lacks sufficient pressure and flow, process gas enters the seal cavity through the process labyrinth ...

Understanding the Causes of Pump Shaft Breakage

By NTS. Pump shafts are essential in many industrial and commercial applications, providing the necessary mechanical force to move fluids through pipelines and process systems. However, when a pump shaft breaks, it can cause significant downtime, production losses, and safety risks. In this article, we will explore the common causes of pump shaft breakage and how to prevent it from occurring. 1. Excessive Load  The most common cause of pump shaft breakage is excessive load. When a pump is overloaded, it places a significant amount of stress on the shaft, causing it to bend, warp, or break. Overloading can be caused by a variety of factors such as a clogged discharge line, worn impeller, or damaged bearings. Proper maintenance, regular inspections, and monitoring of the pump's performance can help prevent overloading. 2. Misalignment  If the pump and motor are not properly aligned, it can cause stress on the pump shaft and lead to breakage. Misalignment can occur due ...

Motor Failures: Common causes and solutions

Bearing failures Bearings are small compared to other major motor components, making them particularly vulnerable to damage and wear. It’s no surprise, then, that studies blame more than half of all motor failures on bearing malfunction, most of which result from too little or too much lubrication. The key to avoiding these conditions is to establish a lubrication program using bearing and motor manufacturer guidelines to determine the frequency and amount of lubrication for the motor application, duty (continuous or intermittent), environmental conditions, and bearing size. Another significant cause of bearing failure is misalignment, the effect of which increases by the cube of the change. For example, an alignment value that is twice the new installation tolerance will reduce bearing life by a factor of 8 (2^3). The solution is simple: align the motor and driven equipment to new or better installation tolerances. Bearing currents are typically caused by dissymmetry ...

5 Important Maintenance Metrics and How To Use Them

By  Bryan Christiansen,  Limble CMMS. Source : maintworld.com Effective maintenance of equipment is a critical factor in delivering quality operations that provide timely resources at a minimal cost. However, those in the maintenance field understand that equipment reliability does not come easy.  Organizations need to set quality benchmarks to measure the current effectiveness and predict future performance and use the data obtained to understand where to make improvements.   One way to do this is by using different maintenance metrics to understand the equipment performance. These metrics are very important as they can mean the difference between achieving the overall business goals and explaining how unexpected breakdowns caused yet another production delay.   Maintenance Metrics You Should Be Measuring What are the maintenance metrics? There are two categories of maintenance key performance indicators which include the leading and lagging indicators....