Skip to main content

Maintenance Strategies Options


A maintenance strategy or option means a scheme for maintenance, i.e. an elaborate and systematic plan of maintenance action. Following are the maintenance strategies that are commonly applied in the plants.

• Breakdown Maintenance or Operate to Failure or Unplanned Maintenance
• Preventive or Scheduled Maintenance
• Predictive or Condition Based Maintenance
• Opportunity Maintenance
• Design out Maintenance

The equipment under breakdown maintenance is allowed to run until it breaks down and then repairing it and putting back to operation. This strategy is suitable for equipments that are not critical and have spare capacity or redundancy available. In preventive or scheduled Maintenance, maintenance actions such as inspection, lubrication, cleaning, adjustment and replacement are undertaken at fixed intervals of numbers of hours or Kilometers.
An effective PM program does help in avoidance of accidents. Condition monitoring (CM) detects and diagnoses faults and it helps in planned maintenance based on equipment condition. This condition based maintenance strategy or predictive maintenance is preferred for critical systems and for such systems breakdown maintenance is to be avoided. A number of CM techniques such as vibration, temperature, oil analysis, etc. have been developed, which guide the users in planned maintenance.
In opportunity maintenance, timing of maintenance is determined by the procedure adopted for some other item in the same unit or plant. In design out maintenance, the aim is to minimize the effect of failures and in fact eliminates the cause of maintenance. Although it is an engineering design problem, yet it is often a responsibility of maintenance department. This is opted for items of high maintenance cost that are due to poor maintenance, poor design or poor design outside design specifications. It may be mentioned that a best maintenance strategy for each item should be selected by considering its maintenance characteristics, cost and safety.

In addition to the above, new strategies concepts such as Proactive Maintenance, Reliability Centred Maintenance (RCM), Total Productive Maintenance (TPM), etc. have recently been evolved to look it from different perspectives and this has helped in developing effective maintenance. In proactive maintenance, the aim is identify what can go wrong, i.e. by monitoring of parameters that can cause failures. In RCM, the type of maintenance is chosen with reliability of the system in consideration, i.e. system functions, failures relating to those functions and effects of the dominant functional system failures. This strategy in the beginning was applied to critical systems such as aircrafts, nuclear and space applications. At present, this is being extended to critical systems in the plant.
TPM, a Japanese concept, involves total participation of all concerned. The aim is to have overall effectiveness of the equipment with participation of all concerned using productive maintenance system.

Comments

Popular posts from this blog

Maintenance 4.0 Implementation Handbook (pdf)

WHAT IS MAINTENANCE 4.0? Industry 4.0 is a name given to the current trend of automation and data exchange in industrial technologies. It includes the Industrial Internet of things (IIoT), wireless sensors, cloud computing, artificial intelligence (AI) and machine learning. Industry 4.0 is commonly referred to as the fourth industrial revolution. Maintenance 4.0 is a machine-assisted digital version of all the things we have been doing for the past forty years as humans to ensure our assets deliver value for our organization. Maintenance 4.0 includes a holistic view of sources of data, ways to connect, ways to collect, ways to analyze and recommended actions to take in order to ensure asset function (reliability) and value (asset management) are digitally assisted. For example, traditional Maintenance 1.0 includes sending highly-trained specialists to collect machinery vibration analysis readings on pumps, motors and gearboxes. Maintenance 4.0 includes a wireless vibration sensor conne...

Technical questions with answers on gas turbines

By NTS. What is a gas turbine? A gas turbine is an engine that converts the energy from a flow of gas into mechanical energy. How does a gas turbine work? Gas turbines work on the Brayton cycle, which involves compressing air, mixing it with fuel, and igniting the mixture to create a high-temperature, high-pressure gas. This gas expands through a turbine, which generates mechanical energy that can be used to power a variety of machines and equipment. What are the different types of gas turbines? There are three main types of gas turbines: aeroderivative , industrial, and heavy-duty. Aeroderivative gas turbines are used in aviation and small-scale power generation. Industrial gas turbines are used in power generation and other industrial applications. Heavy-duty gas turbines are typically used in large power plants. What are the main components of a gas turbine? The main components of a gas turbine include the compressor, combustion chamb...

Top 8 Reasons for Mechanical Seal Failure and How to Prevent Them

Mechanical seals are critical components of pumps, responsible for maintaining a fluid-tight seal between the rotating shaft and the stationary pump housing. However, these seals can fail due to various factors, leading to leakage, reduced pump efficiency, and costly downtime. In this article, we will discuss the top reasons for mechanical seal failure in pumps and how to prevent them. 1-Improper Seal Selection Choosing the wrong mechanical seal can cause it to fail. Consider the following factors that can contribute to seal failure: • Chemical compatibility: All seal components, such as the seal faces and O-rings, must be compatible not only with the process fluid being pumped, but also with non-process fluids used for cleaning, steam, acid, and caustic flushes, etc. • Physical degradation: Using soft seal faces on abrasive liquids will not last. Shear-sensitive liquids, like chocolate, can break down and leave behind solids (such as cocoa powder) and force out liquids (like oil). • S...

Why Pump Shafts Often Break at the Keyway Area

By NTS Pump shaft failure can lead to significant downtime and repair costs in industrial plants. One of the most common locations for pump shaft failure is at the keyway area. In this article, we will explore the reasons why pump shafts often break at the keyway and what can be done to prevent such failures. The keyway is a high-stress point (weakest point)  on the shaft, where a key is inserted to transmit torque between the shaft and the pump impeller or coupling. During operation, the keyway experiences cyclic loading that creates a bending moment in the shaft, which is concentrated in the keyway area. Over time, this cyclic loading can cause fatigue failure in the shaft material, leading to a fracture at the keyway. In addition to cyclic loading, other factors can contribute to shaft failure at the keyway. Improper keyway design or installation can lead to stress concentrations or inadequate clearance between the key and keyway . Misalignment or overloading can also cause ex...

Pump Shaft Breakage: Case Studies and Solutions

By NTS Pump shaft breakage is a common issue that can cause costly downtime and repairs in various industries. In this article, we will explore several case studies of pump shaft breakage and the solutions implemented to prevent future failures. Case Study 1: Chemical Processing Plant A chemical processing plant experienced repeated pump shaft breakages in their cooling water pumps. Investigation revealed that the pumps were not properly aligned with the motor and had excessive vibration due to the misalignment. This caused the pump shaft to fatigue and break over time. The problem was resolved by realigning the pumps and installing vibration monitoring equipment to detect any future misalignment or excessive vibration. Case Study 2: Wastewater Treatment Plant A wastewater treatment plant had issues with pump shaft breakage in their sludge pumps. The pumps were designed with a straight shaft and lacked a flexible coupling, causing excessive stress and vibration on the pump sha...