Skip to main content

New research and techniques of World Maintenance


New research
Quite apart from greater expectations, new research is changing many of our most basic beliefs about age and failure. In particular, it is apparent that there is less and less connection between the operating age of most assets and how likely they are to fail.
Figure 1.2 shows how the earliest view of failure was simply that as things got older, they were more likely to fail. A growing awareness of 'infant mortality' led to widespread Second Generation belief in the "bathtub" curve.


However, Third Generation research has revealed that not one or two but six failure patterns actually occur in practice. This is discussed in detail later, but it too is having a profound effect on maintenance.
New techniques
There has been explosive growth in new maintenance concepts and techniques. Hundreds have been developed over the past fifteen years, and more are emerging every week.
Figure 1.3 shows how the classical emphasis on overhauls and administrative systems has grown to include many new developments in a number of different fields.


The new developments include:
  • decision support tools, such as hazard studies, failure modes and effects analyses and expert systems
  • new maintenance techniques, such as condition monitoring
  • designing equipment with a much greater emphasis on reliability and maintainability
  • a major shift in organizational thinking towards participation, team-working and flexibility. 

A major challenge facing maintenance people nowadays is not only to learn what these techniques are, but to decide which are worthwhile and which are not in their own organizations. If we make the right choices, it is possible to improve asset performance and at the same time contain and even reduce the cost of maintenance. If we make the wrong choices, new problems are created while existing problems only get worse.

Comments

Popular posts from this blog

Mastering the Monitoring of Low-Speed Bearings

Machinery that operates at speeds below 600 rpm falls under the category of low-speed machines. These machines are typically large and possess high rotating inertias, making them crucial components of the production line. Although these machines are less prone to breakdowns, they are considered critical, and their failure can result in enormous production losses, significant downtime, and substantial replacement costs. Historically, there has been limited interest in the condition monitoring of these machines due to their infrequent failures. The parts of these machines that necessitate condition monitoring are primarily the bearings and gears in motion. This article will cover modern and innovative techniques for monitoring the condition of low-speed machinery, with a particular emphasis on monitoring the condition of rolling element bearings. Monitoring low-speed bearings present unique challenges. In the case of high-speed bearings, vibration analysis, thermography, and wear deb...

Three Generations of World Maintenance

Since the 1930's, the evolution of maintenance can be traced through three generations. RCM is rapidly becoming a cornerstone of the Third Generation, but this generation can only be viewed in perspective in the light of the First and Second Generations. The First Generation The First Generation covers the period up to World War II. In those days industry was not very highly mechanized, so downtime did not matter much. This meant that the prevention of equipment failure was not a very high priority in the minds of most managers. At the same time, most equipment was simple and much of it was over-designed. This made it reliable and easy to repair. As a result, there was no need for systematic maintenance of any sort beyond simple cleaning, servicing and lubrication routines. The need for skills was also lower than it is today.

Benefits of Remanufacturing bearings

Replacing bearings can prove to be expensive, both in new bearing cost and lost productivity. Some manufacturer takes bearings and expertly remanufactures them to like-new condition for extended service.

How To Troubleshoot the Effective Maintenance

Knowledge of effective troubleshooting practices can go a long way toward getting equipment back on line quickly. Unfortunately, due to many reasons troubleshooting occupies too much of a technician's time. You might consider these six key elements to improve your troubleshooting skills: Understand the system Understand the problem and history Eliminate the obvious Develop possible causes and theories Eliminate causes, start with what is easy, or likely Validate and document the solution Firstly, if you do not understand the system and how it functions, you will be thrashing around in the dark. I found the best time to understand was while the equipment was running and producing product. Time spent studying the process while the equipment was running paid huge benefits when issues arose. It was always beneficial to listen closely to what the operator saw, heard, noticed, and did, just before the problem occurred. I learned quickly that a good operator was a great asset. ...

Introduction To World of Maintenance

Maintenance has changed Over the last twenty years, maintenance has changed, perhaps more so than any other management discipline. The changes are due to a huge increase in the number and variety of physical assets (plant, equipment and buildings) that must be maintained throughout the world, more complex designs, new maintenance techniques and changing views on maintenance organization and responsibilities.