Skip to main content

Three Generations of World Maintenance

Since the 1930's, the evolution of maintenance can be traced through three generations. RCM is rapidly becoming a cornerstone of the Third Generation, but this generation can only be viewed in perspective in the light of the First and Second Generations.

The First Generation
The First Generation covers the period up to World War II. In those days industry was not very highly mechanized, so downtime did not matter much. This meant that the prevention of equipment failure was not a very high priority in the minds of most managers. At the same time, most equipment was simple and much of it was over-designed. This made it reliable and easy to repair. As a result, there was no need for systematic maintenance of any sort beyond simple cleaning, servicing and lubrication routines. The need for skills was also lower than it is today.
The Second Generation

Things changed dramatically during World War II. Wartime pressures increased the demand for goods of all kinds while the supply of industrial manpower dropped sharply. This led to increased mechanization. By the 1950's machines of all types were more numerous and more complex. Industry was beginning to depend on them.

As this dependence grew, downtime came into sharper focus. This led to the idea that equipment failures could and should be prevented, which led in turn to the concept of preventive maintenance. In the 1960's, this consisted mainly of equipment overhauls done at fixed intervals.

The cost of maintenance also started to rise sharply relative to other operating costs. This led to the growth of maintenance planning and control systems. These have helped greatly to bring maintenance under control, and are now an established part of the practice of maintenance.

Finally, the amount of capital tied up in fixed assets together with a sharp increase in the cost of that capital led people to start seeking ways in which they could maximize the life of the assets.

The Third Generation

Since the mid-seventies, the process of change in industry has gathered even greater momentum. The changes can be classified under the headings of new expectations, new research and new techniques.

Figure 1. 1 shows how expectations of maintenance have evolved. 

Downtime has always affected the productive capability of physical assets by reducing output, increasing operating costs and interfering with customer service. By the 1960's and 1970's, this was already a major concern in the mining, manufacturing and transport sectors. In manufacturing, the effects of downtime are being aggravated by the worldwide move towards just-in-time systems, where reduced stocks of work-in-progress mean that quite small breakdowns are now much more likely to stop a whole plant. In recent times, the growth of mechanization and automation has meant that reliability and availability have now also become key issues in sectors as diverse as health care, data processing, telecommunications and building management.

Greater automation also means that more and more failures affect our ability to sustain satisfactory quality standards. This applies as much to standards of service as it does to product quality. For instance, equipment failures can affect climate control in buildings and the punctuality of transport networks as much as they can interfere with the consistent achievement of specified tolerances in manufacturing.

More and more failures have serious safety or environmental consequences, at a time when standards in these areas are rising rapidly. In some parts of the world, the point is approaching where organizations either conform to society's safety and environmental expectations, or they cease to operate. This adds an order of magnitude to our dependence on the integrity of our physical assets - one which goes beyond cost and which becomes a simple matter of organizational survival.

At the same time as our dependence on physical assets is growing, so too is their cost - to operate and to own. To secure the maximum return on the investment which they represent, they must be kept working efficiently for as long as we want them to.

Finally, the cost of maintenance itself is still rising, in absolute terms and as a proportion of total expenditure. In some industries, it is now the second highest or even the highest element of operating costs. As a result, in only thirty years it has moved from almost nowhere to the top of the league as a cost control priority.

Comments

Popular posts from this blog

Top 8 Reasons for Mechanical Seal Failure and How to Prevent Them

Mechanical seals are critical components of pumps, responsible for maintaining a fluid-tight seal between the rotating shaft and the stationary pump housing. However, these seals can fail due to various factors, leading to leakage, reduced pump efficiency, and costly downtime. In this article, we will discuss the top reasons for mechanical seal failure in pumps and how to prevent them. 1-Improper Seal Selection Choosing the wrong mechanical seal can cause it to fail. Consider the following factors that can contribute to seal failure: • Chemical compatibility: All seal components, such as the seal faces and O-rings, must be compatible not only with the process fluid being pumped, but also with non-process fluids used for cleaning, steam, acid, and caustic flushes, etc. • Physical degradation: Using soft seal faces on abrasive liquids will not last. Shear-sensitive liquids, like chocolate, can break down and leave behind solids (such as cocoa powder) and force out liquids (like oil). • S...

Dry Gas Seal Failure Modes

BY BHUSHAN NIKAM. Invented in the mid-20th century and typically equipped in process gas centrifugal, dry gas screw compressors and expanders, dry gas seals (DGS) are the preferred gas lubricated dry seal solutions available on the market. They have become the standard for new machines. DGS are robust, simple, consume less power, and are more efficient in reducing leakage than their predecessor. Various configurations such as tandem with and without an intermediate labyrinth ( Figure 1 ), single ( Figure 2 ), and double ( Figure 3 ) are available & shall be selected based on process requirements. In this article, we discuss the various DGS failure modes and how they should be addressed:  PRESSURIZED HOLD/STANDBY Pressurized hold, also called settle-out condition, occurs when the compressor remains at a standstill, but the casing is pressurized. If an alternate process gas lacks sufficient pressure and flow, process gas enters the seal cavity through the process labyrinth ...

Understanding the Causes of Pump Shaft Breakage

By NTS. Pump shafts are essential in many industrial and commercial applications, providing the necessary mechanical force to move fluids through pipelines and process systems. However, when a pump shaft breaks, it can cause significant downtime, production losses, and safety risks. In this article, we will explore the common causes of pump shaft breakage and how to prevent it from occurring. 1. Excessive Load  The most common cause of pump shaft breakage is excessive load. When a pump is overloaded, it places a significant amount of stress on the shaft, causing it to bend, warp, or break. Overloading can be caused by a variety of factors such as a clogged discharge line, worn impeller, or damaged bearings. Proper maintenance, regular inspections, and monitoring of the pump's performance can help prevent overloading. 2. Misalignment  If the pump and motor are not properly aligned, it can cause stress on the pump shaft and lead to breakage. Misalignment can occur due ...

Motor Failures: Common causes and solutions

Bearing failures Bearings are small compared to other major motor components, making them particularly vulnerable to damage and wear. It’s no surprise, then, that studies blame more than half of all motor failures on bearing malfunction, most of which result from too little or too much lubrication. The key to avoiding these conditions is to establish a lubrication program using bearing and motor manufacturer guidelines to determine the frequency and amount of lubrication for the motor application, duty (continuous or intermittent), environmental conditions, and bearing size. Another significant cause of bearing failure is misalignment, the effect of which increases by the cube of the change. For example, an alignment value that is twice the new installation tolerance will reduce bearing life by a factor of 8 (2^3). The solution is simple: align the motor and driven equipment to new or better installation tolerances. Bearing currents are typically caused by dissymmetry ...

5 Important Maintenance Metrics and How To Use Them

By  Bryan Christiansen,  Limble CMMS. Source : maintworld.com Effective maintenance of equipment is a critical factor in delivering quality operations that provide timely resources at a minimal cost. However, those in the maintenance field understand that equipment reliability does not come easy.  Organizations need to set quality benchmarks to measure the current effectiveness and predict future performance and use the data obtained to understand where to make improvements.   One way to do this is by using different maintenance metrics to understand the equipment performance. These metrics are very important as they can mean the difference between achieving the overall business goals and explaining how unexpected breakdowns caused yet another production delay.   Maintenance Metrics You Should Be Measuring What are the maintenance metrics? There are two categories of maintenance key performance indicators which include the leading and lagging indicators....