Skip to main content

What is ISFD Bearings, how it works?

What is the ISFD Bearings?
Integral squeeze film damper (ISFD) technology, a Flexure Pivot tilt pad journal bearing, provides precise stiffness and damping to increase the dynamic stability of the rotor/bearing system.

Reduce Dynamic Bearing Forces

ISFD technology reduces the dynamic load that is transmitted to the bearings, which reduces pedestal vibration and increases bearing life, particularly for rolling element bearings. For fluid film bearings, the technology can mitigate pivot wear and reduce babbitt fatigue.

Decrease Unbalance Sensitivity

ISFD technology helps reduce the sensitivity to unbalance, protecting impellers and seals from rubbing and increasing maintenance intervals.

Versatile Design

The ISFD design, manufactured through electrical discharge machining (EDM), can integrate the bearing and damper into one unit for a space-saving solution suitable for new and retrofit installations. ISFD technology can be used with tilt pad, Flexure Pivot tilt pad, fixed profile or rolling element bearings.

How It Works



 the flexibility of the spring allows for motion at the bearing location


squeeze film provides damping transferring energy from machine vibrations to the viscous fluid

a tilt pad flexure pivot bearing 

The ISFD design is manufactured through electrical discharge machining. Integral “S” shape springs connect an outer and inner ring, and a squeeze film damper land extends between each set of springs. Bearing pads are housed in the inner ring (Figure below). The unique design allows for high-precision control of concentricity, stiffness, and rotor positioning. It produces superior damping effectiveness by separating stiffness from damping.

 

Integral squeeze film damper (ISFD) technology, shown here as part of a Flexure Pivot tilt pad journal bearing, provides precise stiffness and damping to increase the dynamic stability of the rotor/bearing system.

This four-pad tilt pad journal bearing utilizes integral squeeze film damper technology.


While a conventional squeeze film damper (SFD) experiences a dynamic stiffness from the damper film that is dependent on amplitude and frequency, in the ISFD design, the stiffness is defined only by the springs. This allows for good predictability, and precise placement of critical speeds and rotor modes, regardless of vibration amplitudes and frequencies.

Whereas damping in a conventional SFD is generated by squeezing in the damper film and governed by circumferential film flow, the segmented ISFD design prevents circumferential flow and absorbs energy through the piston/dashpot effect. Flow resistance at the oil supply nozzle and end seals controls ISFD damping.

Both the stiffness and the damping of the ISFD design are optimized for the application through a rigorous rotordynamic analysis. For the steam turbine, because steam whirl was one of the root causes of the subsynchronous vibrations, the analysis of the ISFD solution paid careful attention to modeling destabilizing seal forces and stage forces.

A damped eigenvalue analysis without those forces showed a better stability margin by a factor of 12 with the ISFD design compared to the original bearings. With the destabilizing forces, the ISFD solution maintained a high stability margin. The combination of low stiffness and optimum damping at the bearing support is the key in transforming bending modes to more rigid body modes and improving the overall stability and damping ratio of the rotor/bearing system.

Typical Applications

  • Integrally geared compressors
  • Centrifugal compressors
  • Steam turbines
  • Gas turbines
  • Turboexpanders
  • Radial turbines
  • Supercritical CO2 power turbines
  • Generators
  • Motors
  • Overhung process equipment

Comments

Popular posts from this blog

John Crane's Type 28 Dry Gas Seals: How Does It Work?

How Does It Work? Highest Pressure Non-Contacting, Dry-Running Gas Seal Type 28 compressor dry-running gas seals have been the industry standard since the early 1980s for gas-handling turbomachinery. Supported by John Crane's patented design features, these seals are non-contacting in operation. During dynamic operation, the mating ring/seat and primary ring/face maintain a sealing gap of approximately 0.0002 in./5 microns, thereby eliminating wear. These seals eliminate seal oil contamination and reduce maintenance costs and downtime. John Crane's highly engineered Type 28 series gas seals incorporate patented spiral-groove technology, which provides the most efficient method for lifting and maintaining separation of seal faces during dynamic operation. Grooves on one side of the seal face direct gas inward toward a non-grooved portion of the face. The gas flowing across the face generates a pressure that maintains a minute gap between the faces, optimizing flui...

Pump Shaft Breakage: Case Studies and Solutions

By NTS Pump shaft breakage is a common issue that can cause costly downtime and repairs in various industries. In this article, we will explore several case studies of pump shaft breakage and the solutions implemented to prevent future failures. Case Study 1: Chemical Processing Plant A chemical processing plant experienced repeated pump shaft breakages in their cooling water pumps. Investigation revealed that the pumps were not properly aligned with the motor and had excessive vibration due to the misalignment. This caused the pump shaft to fatigue and break over time. The problem was resolved by realigning the pumps and installing vibration monitoring equipment to detect any future misalignment or excessive vibration. Case Study 2: Wastewater Treatment Plant A wastewater treatment plant had issues with pump shaft breakage in their sludge pumps. The pumps were designed with a straight shaft and lacked a flexible coupling, causing excessive stress and vibration on the pump sha...

Benefits of Remanufacturing bearings

Replacing bearings can prove to be expensive, both in new bearing cost and lost productivity. Some manufacturer takes bearings and expertly remanufactures them to like-new condition for extended service.

What does The term ‘maintenance’ mean ?

The term ‘maintenance’ means to keep the equipment in operational condition or repair it to its operational mode. Main objective of the maintenance is to have increased availability of production systems, with increased safety and optimized cost.

How To Troubleshoot the Effective Maintenance

Knowledge of effective troubleshooting practices can go a long way toward getting equipment back on line quickly. Unfortunately, due to many reasons troubleshooting occupies too much of a technician's time. You might consider these six key elements to improve your troubleshooting skills: Understand the system Understand the problem and history Eliminate the obvious Develop possible causes and theories Eliminate causes, start with what is easy, or likely Validate and document the solution Firstly, if you do not understand the system and how it functions, you will be thrashing around in the dark. I found the best time to understand was while the equipment was running and producing product. Time spent studying the process while the equipment was running paid huge benefits when issues arose. It was always beneficial to listen closely to what the operator saw, heard, noticed, and did, just before the problem occurred. I learned quickly that a good operator was a great asset. ...