Skip to main content

What is ISFD Bearings, how it works?

What is the ISFD Bearings?
Integral squeeze film damper (ISFD) technology, a Flexure Pivot tilt pad journal bearing, provides precise stiffness and damping to increase the dynamic stability of the rotor/bearing system.

Reduce Dynamic Bearing Forces

ISFD technology reduces the dynamic load that is transmitted to the bearings, which reduces pedestal vibration and increases bearing life, particularly for rolling element bearings. For fluid film bearings, the technology can mitigate pivot wear and reduce babbitt fatigue.

Decrease Unbalance Sensitivity

ISFD technology helps reduce the sensitivity to unbalance, protecting impellers and seals from rubbing and increasing maintenance intervals.

Versatile Design

The ISFD design, manufactured through electrical discharge machining (EDM), can integrate the bearing and damper into one unit for a space-saving solution suitable for new and retrofit installations. ISFD technology can be used with tilt pad, Flexure Pivot tilt pad, fixed profile or rolling element bearings.

How It Works



 the flexibility of the spring allows for motion at the bearing location


squeeze film provides damping transferring energy from machine vibrations to the viscous fluid

a tilt pad flexure pivot bearing 

The ISFD design is manufactured through electrical discharge machining. Integral ā€œSā€ shape springs connect an outer and inner ring, and a squeeze film damper land extends between each set of springs. Bearing pads are housed in the inner ring (Figure below). The unique design allows for high-precision control of concentricity, stiffness, and rotor positioning. It produces superior damping effectiveness by separating stiffness from damping.

 

Integral squeeze film damper (ISFD) technology, shown here as part of a Flexure Pivot tilt pad journal bearing, provides precise stiffness and damping to increase the dynamic stability of the rotor/bearing system.

This four-pad tilt pad journal bearing utilizes integral squeeze film damper technology.


While a conventional squeeze film damper (SFD) experiences a dynamic stiffness from the damper film that is dependent on amplitude and frequency, in the ISFD design, the stiffness is defined only by the springs. This allows for good predictability, and precise placement of critical speeds and rotor modes, regardless of vibration amplitudes and frequencies.

Whereas damping in a conventional SFD is generated by squeezing in the damper film and governed by circumferential film flow, the segmented ISFD design prevents circumferential flow and absorbs energy through the piston/dashpot effect. Flow resistance at the oil supply nozzle and end seals controls ISFD damping.

Both the stiffness and the damping of the ISFD design are optimized for the application through a rigorous rotordynamic analysis. For the steam turbine, because steam whirl was one of the root causes of the subsynchronous vibrations, the analysis of the ISFD solution paid careful attention to modeling destabilizing seal forces and stage forces.

A damped eigenvalue analysis without those forces showed a better stability margin by a factor of 12 with the ISFD design compared to the original bearings. With the destabilizing forces, the ISFD solution maintained a high stability margin. The combination of low stiffness and optimum damping at the bearing support is the key in transforming bending modes to more rigid body modes and improving the overall stability and damping ratio of the rotor/bearing system.

Typical Applications

  • Integrally geared compressors
  • Centrifugal compressors
  • Steam turbines
  • Gas turbines
  • Turboexpanders
  • Radial turbines
  • Supercritical CO2 power turbines
  • Generators
  • Motors
  • Overhung process equipment

Comments

Popular posts from this blog

Why Pump Shafts Often Break at the Keyway Area

By NTS Pump shaft failure can lead to significant downtime and repair costs in industrial plants. One of the most common locations for pump shaft failure is at the keyway area. In this article, we will explore the reasons why pump shafts often break at the keyway and what can be done to prevent such failures. The keyway is a high-stress point (weakest point)  on the shaft, where a key is inserted to transmit torque between the shaft and the pump impeller or coupling. During operation, the keyway experiences cyclic loading that creates a bending moment in the shaft, which is concentrated in the keyway area. Over time, this cyclic loading can cause fatigue failure in the shaft material, leading to a fracture at the keyway. In addition to cyclic loading, other factors can contribute to shaft failure at the keyway. Improper keyway design or installation can lead to stress concentrations or inadequate clearance between the key and keyway . Misalignment or overloading can also cause ex...

John Crane's Type 28 Dry Gas Seals: How Does It Work?

How Does It Work? Highest Pressure Non-Contacting, Dry-Running Gas Seal Type 28 compressor dry-running gas seals have been the industry standard since the early 1980s for gas-handling turbomachinery. Supported by John Crane's patented design features, these seals are non-contacting in operation. During dynamic operation, the mating ring/seat and primary ring/face maintain a sealing gap of approximately 0.0002 in./5 microns, thereby eliminating wear. These seals eliminate seal oil contamination and reduce maintenance costs and downtime. John Crane's highly engineered Type 28 series gas seals incorporate patented spiral-groove technology, which provides the most efficient method for lifting and maintaining separation of seal faces during dynamic operation. Grooves on one side of the seal face direct gas inward toward a non-grooved portion of the face. The gas flowing across the face generates a pressure that maintains a minute gap between the faces, optimizing flui...

FACTORS IMPACTING COMPRESSOR SURGE

BY AMIN ALMASI. Surge can be a major challenge for turbo compressors. Operation in the surge area will result in instability, exposing the machine to destructive stresses and forces, high vibration, and even serious damage. Surge during shutdown (trip) has been reported for many turbo-compressors. This is particularly possible if the machine operates at high head and low flow, immediately before the trip, when the operating point can move toward the surge line and even pass it during coast-down (when the turbo-compressor reduces flowrate). When a turbo-compressor experiences a serious alarm, an emergency shutdown is usually initiated. But an immediate shutdown could result in a surge. In this case, the surge happens shortly after the shutdown (trip) and at a high energy level. This could be a surge at a high head (operating point could pass the surge line at high head). In many cases, there are advantages to not removing the driving power from the turbocompressor (tripping) immediately...