Skip to main content

Turbomachinery failures

BY AMIN ALMASI.

There are many reasons for turbomachinery problems and failures. Resonance, for example, is often overlooked. 

Rotating parts and components such as impellers and blade rows could be in resonance with any excitations generated by turbomachinery. Resonances for the first and second natural frequencies can be dangerous. Generally, there could be numerous cases of resonance. The second natural frequency of a rotating component, in one example, proved to be almost exactly an integer multiple of the first natural frequency. This led to excitation and operational problems. Fluid-induced vibration, oscillatory changes of fluid pressure, and turbulent flow (vortex formation) might also cause high vibration or even failure. 

Fatigue, too, is often a root cause in failures of rotating parts. Individual stress amplitudes should be analyzed to ensure associated components will not fail due to different forms of fatigue such as high-cycle fatigue (HCF) and low-cycle fatigue (LCF). 

For shaft failures, the reasons behind failures can be broken down into: 

1. Mechanical: such as overhung/bending/ torsional/axial load. 

2. Dynamic: vibration, cyclic, shock. 

3. Residual: manufacturing/repair processes. 

4.Thermal: temperature gradients, rotor bowing. 

5. Environmental: corrosion, moisture, erosion, wear, cavitation. 

Before the root cause of a shaft failure can be determined, it is necessary to understand shaft loadings and stresses. The ability to characterize the microstructure and surface topology of a failed shaft is critical. Visual inspection, optical scanning, electron microscopes, and metallurgical analysis can be used, for example. 

(source: r-e-v.co.uk)

Many failures can be diagnosed using a fundamental knowledge of shaft failure causes and visual inspections. This can later be confirmed through a metallurgical laboratory or other methods.

Based on case studies from several plants, the main reasons for shaft failure are: corrosion (35%), fatigue (32%), brittle fracture (16%), overload (11%), and creep/wear/erosion/abrasion (6%). Some studies found fatigue responsible for more than 50% of failures. Therefore, pay attention to surface discontinuities such as keyways, steps, shoulders, collars, threads, holes, snap ring grooves, and shaft damage or flaws. 

Keyway regions are often problematic. Keyways are commonly used to secure rotating components, rotor cores, and couplings to the shaft. The take-off end (or drive/driven end) is where the highest shaft loading occurs. Fatigue cracks usually start in the fillets or roots. A keyway that ends with sharp step(s) has higher stress concentration than one using a sled-runner type. In the case of heavy shaft loading, cracks frequently emanate from sharp steps. Avoid connections using keys if possible. If it can’t be avoided, obtain a sufficient edge radius. 

Fatigue-related failures usually follow the weakest-link theory: Fatigue leads to an initial crack on the surface; cracks propagate until the shaft cross-section is too weak to carry the load; and finally, a sudden fracture occurs. 

Remember that residual stresses or initial defects/deflections could be independent of external loadings. There are manufacturing or repair processes that can affect residual stresses, initial deflections, and defects. These include: drawing, bending, straightening, machining, grinding, surface rolling, shot blasting, and polishing. They can produce residual stresses and defects by plastic deformation. And thermal processes such as hot rolling, welding, torch cutting, and heat treating can lead to problems. 

Finally, shaft fretting can cause serious damage. Typical locations are points on the shaft where a press or slip fit exists. The presence of rust between mating surfaces helps confirm fretting took place due to movement between mating parts. Once fretting occurs, the shaft can become sensitive to fatigue cracking. Shaft vibration can worsen this situation.


Turbomachinery International

Comments

Popular posts from this blog

John Crane's Type 28 Dry Gas Seals: How Does It Work?

How Does It Work? Highest Pressure Non-Contacting, Dry-Running Gas Seal Type 28 compressor dry-running gas seals have been the industry standard since the early 1980s for gas-handling turbomachinery. Supported by John Crane's patented design features, these seals are non-contacting in operation. During dynamic operation, the mating ring/seat and primary ring/face maintain a sealing gap of approximately 0.0002 in./5 microns, thereby eliminating wear. These seals eliminate seal oil contamination and reduce maintenance costs and downtime. John Crane's highly engineered Type 28 series gas seals incorporate patented spiral-groove technology, which provides the most efficient method for lifting and maintaining separation of seal faces during dynamic operation. Grooves on one side of the seal face direct gas inward toward a non-grooved portion of the face. The gas flowing across the face generates a pressure that maintains a minute gap between the faces, optimizing flui...

Pump Shaft Breakage: Case Studies and Solutions

By NTS Pump shaft breakage is a common issue that can cause costly downtime and repairs in various industries. In this article, we will explore several case studies of pump shaft breakage and the solutions implemented to prevent future failures. Case Study 1: Chemical Processing Plant A chemical processing plant experienced repeated pump shaft breakages in their cooling water pumps. Investigation revealed that the pumps were not properly aligned with the motor and had excessive vibration due to the misalignment. This caused the pump shaft to fatigue and break over time. The problem was resolved by realigning the pumps and installing vibration monitoring equipment to detect any future misalignment or excessive vibration. Case Study 2: Wastewater Treatment Plant A wastewater treatment plant had issues with pump shaft breakage in their sludge pumps. The pumps were designed with a straight shaft and lacked a flexible coupling, causing excessive stress and vibration on the pump sha...

Benefits of Remanufacturing bearings

Replacing bearings can prove to be expensive, both in new bearing cost and lost productivity. Some manufacturer takes bearings and expertly remanufactures them to like-new condition for extended service.

What does The term ‘maintenance’ mean ?

The term ‘maintenance’ means to keep the equipment in operational condition or repair it to its operational mode. Main objective of the maintenance is to have increased availability of production systems, with increased safety and optimized cost.

How To Troubleshoot the Effective Maintenance

Knowledge of effective troubleshooting practices can go a long way toward getting equipment back on line quickly. Unfortunately, due to many reasons troubleshooting occupies too much of a technician's time. You might consider these six key elements to improve your troubleshooting skills: Understand the system Understand the problem and history Eliminate the obvious Develop possible causes and theories Eliminate causes, start with what is easy, or likely Validate and document the solution Firstly, if you do not understand the system and how it functions, you will be thrashing around in the dark. I found the best time to understand was while the equipment was running and producing product. Time spent studying the process while the equipment was running paid huge benefits when issues arose. It was always beneficial to listen closely to what the operator saw, heard, noticed, and did, just before the problem occurred. I learned quickly that a good operator was a great asset. ...