Skip to main content

DEEP COMPRESSION: A Repair Solution For Steam Turbine Compressor Failures

By Kyle Brandenburg.

Steam turbines provide an efficient means of producing electricity. Improving the corrosion fatigue performance and damage tolerance of steam turbine blades can offer overhaul and maintenance cost savings improved reliability and reduced outages.

The application of surface residual compressive stress to components can enhance fatigue strength and reduce the effects of applied tensile stresses.

Shot peening has been used for decades to reduce overall operating tensile stresses in steam turbine components. However, corrosion pits, erosion, fretting, and other damage can penetrate shot peening’s shallow layer of residual compression, providing a starting point for stress corrosion cracking and fatigue failures. Instead of settling for shallow compression, the introduction of a deep layer of compressive residual stress can extend service life.

To test the benefits of deep compression, high-cycle fatigue tests were done on Type 410 stainless steel, a common alloy widely used in steam turbine applications, to compare the corrosion fatigue benefits of Low Plasticity Burnishing (LPB) to shot peening. LPB is also a mechanical surface treatment, but it imparts a controlled layer of compression that is deeper than most surface damage

LPB was developed in the 1990s to keep cold work low when introducing compressive residual stress. 20 years of studying residual stresses led to the conclusion that residual compression introduced using high levels of cold working could be wiped out from in-service thermal and mechanical loads.

The first step in the investigation was to obtain sample specimens of 410SS machine-finished by low-stress grinding (LSG) to serve as a baseline. Compressive stress was introduced either by LPB or shot peening. The LPB process is performed on conventional CNC machine tools and robots. Shot peening was done using a conventional air blast peening system.

Noted by maintenance4.com:

What Is Shot Peening? A surface enhancement method for improving the fatigue strength of metals near the surface of the component, shot peening is performed by impacting part surfaces with spherical shot particles to induce compressive residual stresses.

DAMAGE TOLERANCE RESULTS

Next to be tested was the fatigue strength of samples subjected to either mechanical damage or simulated corrosion and stress corrosion cracking. Mechanical damage simulates what can happen to the surface of the turbine blade from common fatigue damage mechanisms like foreign object damage, fretting, corrosion pitting, or erosion.

Steam turbine blade being Low Plasticity Burnishing (LPB) processed in a milling machine.

Mechanical damage was simulated through an electrical discharge machining (EDM) notch with a depth of 0.01 in. (0.25mm). For a portion of the LPB-treated samples, a deeper notch depth of 0.02 in. (0.51mm) also was investigated.

High cycle fatigue tests show that shot peening of the 410SS samples provided a modest improvement over the baseline condition with mechanical damage. Residual stress distributions revealed that the 0.01 in. (0.25 mm) notch completely penetrated the compressive layer introduced by shot peening minimizing any fatigue life benefit from shallow compression.

However, the deep compression provided by LPB doubled the fatigue strength and improved fatigue life near the endurance limit by a factor of over 100 compared to the shot peen condition.

Even with damage twice as deep, the LPB-processed samples outperformed those that had been shot-peened. When subjected to corrosion damage and salt exposure, simulated by testing samples in an active corrosion medium of a 3.5% weight NaCl solution after first exposing them to stress corrosion cracking (SCC) in the same medium, the LPB-processed samples again demonstrated double the fatigue strength.

Surface roughness measurements indicated roughness values of 19.5 μin for the baseline sample, 157.1 μin for the shot-peened sample, and 4.5 μin for the LPB-processed sample. The roughness value for the shot-peened sample is nominally 35X higher than that of the LPB-processed sample. Shot peening dimples produce a rough surface that can adversely impact fluid flow at the blade surface.

Residual stress data revealed that LPB produced higher magnitude compression at the surface and about three times the depth of compression compared to what was achieved with shot peening. Compressive stresses are shown as negative values, tensile as positive.

Polarization testing results revealed roughly 20X higher corrosion rate in the highly cold worked shot peened samples compared to the lower cold worked LPB samples.


 
High cycle fatigue results for samples with notches.

 

High cycle fatigue results for samples with SCC and active corrosion.

Some steam turbine manufacturers are now implementing LPB on their blades upfront to reduce overhaul and maintenance issues. Others use LPB as a faster and more economical repair technique. Depending on the steam turbine, manufacturers can apply LPB with the turbine blades installed on the rotor. LPB as a surface treatment does not add material or change the blade’s balance like traditional welding repair methods.

 

Kyle Brandenburg is a Research Engineer at Lambda Technologies Group and has been supporting the research and development efforts of the company for over 10 years. He can be reached at info@lambdatechs.com.


Source: Turbomachinerymag.com

Comments

Popular posts from this blog

Maintenance 4.0 Implementation Handbook (pdf)

WHAT IS MAINTENANCE 4.0? Industry 4.0 is a name given to the current trend of automation and data exchange in industrial technologies. It includes the Industrial Internet of things (IIoT), wireless sensors, cloud computing, artificial intelligence (AI) and machine learning. Industry 4.0 is commonly referred to as the fourth industrial revolution. Maintenance 4.0 is a machine-assisted digital version of all the things we have been doing for the past forty years as humans to ensure our assets deliver value for our organization. Maintenance 4.0 includes a holistic view of sources of data, ways to connect, ways to collect, ways to analyze and recommended actions to take in order to ensure asset function (reliability) and value (asset management) are digitally assisted. For example, traditional Maintenance 1.0 includes sending highly-trained specialists to collect machinery vibration analysis readings on pumps, motors and gearboxes. Maintenance 4.0 includes a wireless vibration sensor conne...

Technical questions with answers on gas turbines

By NTS. What is a gas turbine? A gas turbine is an engine that converts the energy from a flow of gas into mechanical energy. How does a gas turbine work? Gas turbines work on the Brayton cycle, which involves compressing air, mixing it with fuel, and igniting the mixture to create a high-temperature, high-pressure gas. This gas expands through a turbine, which generates mechanical energy that can be used to power a variety of machines and equipment. What are the different types of gas turbines? There are three main types of gas turbines: aeroderivative , industrial, and heavy-duty. Aeroderivative gas turbines are used in aviation and small-scale power generation. Industrial gas turbines are used in power generation and other industrial applications. Heavy-duty gas turbines are typically used in large power plants. What are the main components of a gas turbine? The main components of a gas turbine include the compressor, combustion chamb...

Top 8 Reasons for Mechanical Seal Failure and How to Prevent Them

Mechanical seals are critical components of pumps, responsible for maintaining a fluid-tight seal between the rotating shaft and the stationary pump housing. However, these seals can fail due to various factors, leading to leakage, reduced pump efficiency, and costly downtime. In this article, we will discuss the top reasons for mechanical seal failure in pumps and how to prevent them. 1-Improper Seal Selection Choosing the wrong mechanical seal can cause it to fail. Consider the following factors that can contribute to seal failure: • Chemical compatibility: All seal components, such as the seal faces and O-rings, must be compatible not only with the process fluid being pumped, but also with non-process fluids used for cleaning, steam, acid, and caustic flushes, etc. • Physical degradation: Using soft seal faces on abrasive liquids will not last. Shear-sensitive liquids, like chocolate, can break down and leave behind solids (such as cocoa powder) and force out liquids (like oil). • S...

Why Pump Shafts Often Break at the Keyway Area

By NTS Pump shaft failure can lead to significant downtime and repair costs in industrial plants. One of the most common locations for pump shaft failure is at the keyway area. In this article, we will explore the reasons why pump shafts often break at the keyway and what can be done to prevent such failures. The keyway is a high-stress point (weakest point)  on the shaft, where a key is inserted to transmit torque between the shaft and the pump impeller or coupling. During operation, the keyway experiences cyclic loading that creates a bending moment in the shaft, which is concentrated in the keyway area. Over time, this cyclic loading can cause fatigue failure in the shaft material, leading to a fracture at the keyway. In addition to cyclic loading, other factors can contribute to shaft failure at the keyway. Improper keyway design or installation can lead to stress concentrations or inadequate clearance between the key and keyway . Misalignment or overloading can also cause ex...

Pump Shaft Breakage: Case Studies and Solutions

By NTS Pump shaft breakage is a common issue that can cause costly downtime and repairs in various industries. In this article, we will explore several case studies of pump shaft breakage and the solutions implemented to prevent future failures. Case Study 1: Chemical Processing Plant A chemical processing plant experienced repeated pump shaft breakages in their cooling water pumps. Investigation revealed that the pumps were not properly aligned with the motor and had excessive vibration due to the misalignment. This caused the pump shaft to fatigue and break over time. The problem was resolved by realigning the pumps and installing vibration monitoring equipment to detect any future misalignment or excessive vibration. Case Study 2: Wastewater Treatment Plant A wastewater treatment plant had issues with pump shaft breakage in their sludge pumps. The pumps were designed with a straight shaft and lacked a flexible coupling, causing excessive stress and vibration on the pump sha...