Skip to main content

IMPORTANCE OF ROUTINE CHECKS FOR MECHANICAL REPAIRS

BY BRYAN CHRISTIANSEN.

Mechanical components in a factory require the most attention from a maintenance perspective, as they have a high propensity to fail, making it a high priority for maintenance teams. In turn, it is always better to prevent failures than resort to reactive maintenance.

It is important to note that routine checks help in preventing mechanical troubles in the factory. Let’s look at some of the most prevalent mechanical failures experienced by machines in a factory. While also considering how routine checks have the potential to be an antidote to mechanical failures. Different forces act on mechanical components while they are in operation. They work in an environment where interaction with other components and people in the factory is necessary. Such factors cause mechanical failures.

Common mechanical failures and their causes

Wear and tear: The most common mechanical problem experienced in any machine is the wear and tear of components. When machines are in operation, there are frictional forces acting between components. This friction causes material degradation of components.

Materials degrade to an extent where they can no longer perform their functions. Another risk is the sudden failure of the component while it is in operation. Components experiencing wear and tear need to be replaced before they evolve into a larger failure.

Overheating: Mechanical components in operation generally produce heat. This is due to friction when two surfaces slide against each other. Machines are designed to factor in this heat due to frictional forces.

Overheating is an indication of some fault in the machine. The root cause could be improper installation, lack of lubrication, or leakage of coolant. You need to perform root-cause analysis to identify the underlying cause that is manifested as overheating and rectify it.

Mistakes from operators: Machine operators can perform their tasks erroneously, causing mechanical problems. This could be due to a lack of training or experience of the operator. The operations teams might not have standard operating procedures (SOP) in place, leading to errors from operators, damaging mechanical components. Establishing SOPs and enforcing them with checklists reduces the mistakes performed by operators. Increased automation is another way of eliminating the potential for operator mistakes.

Improper maintenance: Machines and machine components each have a limited life, which depends on regular maintenance and upkeep performed. Scheduled maintenance activities must be done to make sure machines and their components are utilized to their full potential. Regular maintenance and replacement of worn-out components is required to prevent mechanical failures and extend machine life.

Why perform routine checks?

Routine checks are performed to inspect machines and their components for any sign that could indicate a future failure. Routine checks are performed as a preventive measure.

Trained maintenance professionals and operators inspect machines in operation and in an idle state. They are looking for signs of material degradation. You also need to check for any anomalies such as odd sounds, bangs, sparks, and unexpected output.

The anomalies identified must be investigated to find their cause. Rectifying them avoids mechanical failures and the costs that damage could cause. Routine checks help to identify smaller faults that have not manifested to a noticeable scale. Rectifying such faults in a timely manner ensures potential large failures do not happen.



Positive impacts of routine checks include:

Downtime

Routine checks help to identify small faults before they grow large enough to cause machine failure. When such faults are identified, maintenance can be scheduled in such a manner that it does not affect factory operations.

Rectifying the problems eliminates the chance of unscheduled downtime. This will ensure that maintenance activities can be performed to cause minimal disruption to factory operations.

Maintenance frequency

Routine checks force the maintenance team to identify the root cause of any small faults that occur. When the faults are minor, they will be observed closer to the root cause. In operations where routine checks are not done, you will get to know of faults only when a large failure occurs.

The root cause of problems becomes difficult to identify. Reactive maintenance in most cases will be able to patch up problems at the surface level. The root cause will be the origin of more failures that will require regular maintenance and machine downtime. Routine checks will help to catch mistakes in the start, reducing the maintenance needs of machines.

Wastage

Mechanical faults cause wastage in many forms. Increased energy consumption for operations is a common effect of mechanical trouble. The consumed energy could be electrical energy or heat from the combustion of fossil fuels.

Similarly, mechanical faults can cause an increased consumption of raw materials, lubricants, and coolants. Wastage can be avoided with routine checks and rectifying even minor mechanical faults that are observed. This ensures sustainable plant operations and an increased utilization ratio of resources.

Machine life

Machine life depends on many factors in its operations. Minor faults are unavoidable in any machine operation. Sustaining the faults without any rectification damages the machine. Larger catastrophic failures could also happen due to the compounding of smaller faults. These factors adversely affect the life of the machine.

Routine checks help to catch smaller anomalies and defects before they become a larger failure. Routine checks help in performing preventive maintenance, making the machine more robust compared to its counterparts that undergo reactive maintenance.

Scheduling routine checks

Routine checks are indispensable for proper operations and the maintenance of machines in a factory. They come with many benefits that save a lot of time, energy, and money.

You need to incorporate routine checks as part of regular machine operations. Create a checklist of tasks that must be performed on a daily, weekly, and monthly basis to inspect the health of machines. Making these checklists accessible to all maintenance and operations teams is a wise idea.

This helps anyone interested in following and performing routine checks. A cloud-based computerized maintenance management system (CMMS) is ideal for maintaining the checklist for routine checks.

 

Bryan Christiansen is the Founder and CEO at Limble CMMS (a mobile CMMS software company). He can be reached at bryan@ limblecmms.com.

MROMAGAZINE.COM / SEPTEMBER 2022

Comments

Popular posts from this blog

Understanding the Causes of Pump Shaft Breakage

By NTS. Pump shafts are essential in many industrial and commercial applications, providing the necessary mechanical force to move fluids through pipelines and process systems. However, when a pump shaft breaks, it can cause significant downtime, production losses, and safety risks. In this article, we will explore the common causes of pump shaft breakage and how to prevent it from occurring. 1. Excessive Load  The most common cause of pump shaft breakage is excessive load. When a pump is overloaded, it places a significant amount of stress on the shaft, causing it to bend, warp, or break. Overloading can be caused by a variety of factors such as a clogged discharge line, worn impeller, or damaged bearings. Proper maintenance, regular inspections, and monitoring of the pump's performance can help prevent overloading. 2. Misalignment  If the pump and motor are not properly aligned, it can cause stress on the pump shaft and lead to breakage. Misalignment can occur due ...

Why Pump Shafts Often Break at the Keyway Area

By NTS Pump shaft failure can lead to significant downtime and repair costs in industrial plants. One of the most common locations for pump shaft failure is at the keyway area. In this article, we will explore the reasons why pump shafts often break at the keyway and what can be done to prevent such failures. The keyway is a high-stress point (weakest point)  on the shaft, where a key is inserted to transmit torque between the shaft and the pump impeller or coupling. During operation, the keyway experiences cyclic loading that creates a bending moment in the shaft, which is concentrated in the keyway area. Over time, this cyclic loading can cause fatigue failure in the shaft material, leading to a fracture at the keyway. In addition to cyclic loading, other factors can contribute to shaft failure at the keyway. Improper keyway design or installation can lead to stress concentrations or inadequate clearance between the key and keyway . Misalignment or overloading can also cause ex...

The 7 guiding principles of a Maintenance 4.0 strategy

Formulating a digital strategy is not easy, but these guidelines can help you get off the sidelines and into the game. By Eitan Vesely and Deddy Lavid (Ben lulu), Presenso It is not uncommon for organizations to struggle with many issues related to digitalization. With the hype around digitalization at fever pitch, it is easy to become overwhelmed by the multitude of options available in the marketplace. But the strongest contributing factor to implementation challenges is a failure to devise a strategy for an extensive period of uncertainty. Formulating a Maintenance 4.0 strategy is not easy. An aggressive strategy based on overinvesting in unproven technologies or a conservative strategy of merely waiting on the sidelines are unrealistic options. Guiding principles The seven guiding principles for a Maintenance 4.0 strategic plan are: 1. Invest based on the business case The primary obligation to shareholders does not change just because of the changes occurring within t...

Dry Gas Seal Failure Modes

BY BHUSHAN NIKAM. Invented in the mid-20th century and typically equipped in process gas centrifugal, dry gas screw compressors and expanders, dry gas seals (DGS) are the preferred gas lubricated dry seal solutions available on the market. They have become the standard for new machines. DGS are robust, simple, consume less power, and are more efficient in reducing leakage than their predecessor. Various configurations such as tandem with and without an intermediate labyrinth ( Figure 1 ), single ( Figure 2 ), and double ( Figure 3 ) are available & shall be selected based on process requirements. In this article, we discuss the various DGS failure modes and how they should be addressed:  PRESSURIZED HOLD/STANDBY Pressurized hold, also called settle-out condition, occurs when the compressor remains at a standstill, but the casing is pressurized. If an alternate process gas lacks sufficient pressure and flow, process gas enters the seal cavity through the process labyrinth ...

Dry-Running Sealing Technology: Pump Applications (P2)

Solutions to Common Problems The operation of a single contacting seal would be difficult with any of the identified problems. A single contacting seal relies on cooling and lubrication from the process liquid being sealed. Any interruption in the cooling and lubrication processes will result in damage to the seal and leakage to the environment. The non-contacting, dry-running seal is a solution to many of the problems identified by users. An installation to a pump is illustrated in Figure 2. This type of pump seal technology does not require the circulation of liquid for cooling. Instead, a static heat of an inert gas is used to pressurize the space between the seals. Nitrogen gas in normally used to create the barrier between the process liquid and the environment. The gas barrier pressure is normally 20 to 30 psi/1.4 to 2 bar above the seal chamber pressure.  The spiral groove geometry of the seal face is responsible for lift-off and separation of the seal f...