Skip to main content

Mastering the Monitoring of Low-Speed Bearings

Machinery that operates at speeds below 600 rpm falls under the category of low-speed machines. These machines are typically large and possess high rotating inertias, making them crucial components of the production line. Although these machines are less prone to breakdowns, they are considered critical, and their failure can result in enormous production losses, significant downtime, and substantial replacement costs. Historically, there has been limited interest in the condition monitoring of these machines due to their infrequent failures.

The parts of these machines that necessitate condition monitoring are primarily the bearings and gears in motion. This article will cover modern and innovative techniques for monitoring the condition of low-speed machinery, with a particular emphasis on monitoring the condition of rolling element bearings.

Monitoring low-speed bearings present unique challenges. In the case of high-speed bearings, vibration analysis, thermography, and wear debris analysis are standard tools used in predictive maintenance (PdM) programs. However, when it comes to low-speed bearings, these conventional technologies are not effective until the speed is less than 250 rpm. Early bearing failure is a persistent issue in low-speed applications, and the solution lies in using ultrasound.

Ultrasound is an effective solution for monitoring slow-speed bearings, and the process is simpler than one might expect. High-end ultrasound instruments possess a broad sensitivity range and frequency tuning, which enables the acoustic quality of the bearing to be heard, even at lower speeds. However, in extremely slow-speed applications (typically below 25 rpm), there may be little or no ultrasonic noise generated by the bearing. Therefore, it is crucial to analyze the recorded ultrasound sound file using spectrum analysis software, focusing on the time waveform for any anomalies. The presence of "crackling" or "popping" sounds indicates the occurrence of a deformity. For bearing speeds above 25 rpm, a baseline decibel level can be established, and the associated decibel level readings can be trended over time.

Ultrasound devices primarily function by converting high-frequency sound into audible sound through heterodyning. An operator who understands the fundamentals of bearing friction can differentiate between a healthy bearing producing a steady and quiet signal and a faulty bearing causing an intermittent or repetitive ringing or crackling sound. However, listening alone is insufficient. Reliable measurements are necessary to establish a robust PdM program; otherwise, the instrument is no more useful than a stethoscope. For instance, the UE Systems Ultraprobe 15000 enables the user to listen to sound quality and compare baseline information before saving the recording for upload to DMS software. Alarm levels can be set, and data can be analyzed to determine the bearing's condition.

In summary, when monitoring slow-speed bearings, it is essential to rely on sound quality and pattern. Using an ultrasonic instrument with sound recording capabilities such as the Ultraprobe 15000 or OnTrak system is recommended to facilitate data analysis. These tools can effectively manage the lifespan of your bearings and significantly reduce the number of bearing failures caused by improper lubrication. Once the sound is recorded, it can be analyzed using sound spectrum analysis software. Maintenance professionals can then load the file into the software and analyze it, providing valuable insights into when a bearing needs lubrication or replacement if a failure is likely to occur.

View product information:

https://www.uesystems.com/product/ultraprobe-15000/

https://www.uesystems.com/ontrak-smartlube/

Top of Form

 By NTS 

Comments

Popular posts from this blog

Why Pump Shafts Often Break at the Keyway Area

By NTS Pump shaft failure can lead to significant downtime and repair costs in industrial plants. One of the most common locations for pump shaft failure is at the keyway area. In this article, we will explore the reasons why pump shafts often break at the keyway and what can be done to prevent such failures. The keyway is a high-stress point (weakest point)  on the shaft, where a key is inserted to transmit torque between the shaft and the pump impeller or coupling. During operation, the keyway experiences cyclic loading that creates a bending moment in the shaft, which is concentrated in the keyway area. Over time, this cyclic loading can cause fatigue failure in the shaft material, leading to a fracture at the keyway. In addition to cyclic loading, other factors can contribute to shaft failure at the keyway. Improper keyway design or installation can lead to stress concentrations or inadequate clearance between the key and keyway . Misalignment or overloading can also cause ex...

Grounding brush discharge monitoring

In recognition of the possibility of static charge build up in condensing steam turbines, API 612 (2005) specifies that grounding brushes be installed. The electrical flow to ground through these brushes  be monitored and useful information can be extracted. This article carries excerpts from the paper, “Babbitted bearing health assessment” by John K Whalen of John Crane, Thomas D Hess of Chestnut Run, Jim Allen of Nova Chemicals and Jack Craighton of Schneider Electric. Grounding brushes take current from the rotor to ground so that a charge does not build up on the rotor to the point where it discharges to ground though the best path possible – which is usually the closest point between the rotor and stator which is usually (hopefully) the point of minimum film thickness in a bearing. Typically this point of minimum film thickness is found in the active thrust bearing (as will be shown later). Shaft grounding brushes serve two purposes. The brushes are able to transmit modest amo...

Failures in babbit bearings

  There are literally dozens of ways bearings can fail. Some of the more common include: • Babbitt fatigue • Babbitt wiping due to rotor to stator contact • Babbitt flow due to high operating temperatures • Foreign particle damage • Varnish build-up • Electrostatic discharge damage (frosting) • Electromagnetic discharge damage (Spark tracks) • Oil “burn” or additive plating due to high temperatures • Loss of bond between babbitt and base metal • Chemical attack • Pivot wear in tilting pad bearings • Unloaded pad flutter • Cavitation damage This is taken from a paper, Babbitted bearing health assessment" by John Whalen of John Crane, Thomas Hess of Rotating Machinery Group, Jim Allen of Nova Chemicals Corporation and Jack Craighton of Schneider Electric. Babbitt fatigue Babbitt fatigue is caused by dynamic loads on the babbitt surface. Typically in bearings of this type, the dynamic loads are caused by vibration and result in peak film pressure fluct...

Failure investigation, remedies, and mitigation of a centrifugal pump.

  BY LUIS INFANTE & RODOLFO ALVARADO. A high energy pump at a water injection station in El Furrial, Venezuela exhibited extremely high vibration levels prior to an overhaul. It then suffered a catastrophic failure during startup following overhaul. The hydrodynamic bundle, rotor, and drive end (DE) bearing suffered damage.   High energy pump for boiler feed water. Courtesy of Flowserve. This centrifugal pump is a 3,000 HP, double-case volute, boiler feed water pump type. It has nine stages, outputs 750 gpm of water with suction pressure 1800 psi and discharge pressure 5250 psi. Rated speed was increased from 6000 to 6600 RPM to enhance the hydraulic performance. However, the pump’s actual discharge pressure was about 4,500 psi, well below the target value of 5,000 psi. The coupling was reportedly poorly fitted. The increased RPM created rotordynamic concerns of getting closer to a critical speed, thus the operator wanted to know about the synchronous regime. The...

John Crane's Type 28 Dry Gas Seals: How Does It Work?

How Does It Work? Highest Pressure Non-Contacting, Dry-Running Gas Seal Type 28 compressor dry-running gas seals have been the industry standard since the early 1980s for gas-handling turbomachinery. Supported by John Crane's patented design features, these seals are non-contacting in operation. During dynamic operation, the mating ring/seat and primary ring/face maintain a sealing gap of approximately 0.0002 in./5 microns, thereby eliminating wear. These seals eliminate seal oil contamination and reduce maintenance costs and downtime. John Crane's highly engineered Type 28 series gas seals incorporate patented spiral-groove technology, which provides the most efficient method for lifting and maintaining separation of seal faces during dynamic operation. Grooves on one side of the seal face direct gas inward toward a non-grooved portion of the face. The gas flowing across the face generates a pressure that maintains a minute gap between the faces, optimizing flui...