Skip to main content

PREVENTING CREEP IN SUBMERSIBLE PUMP BEARINGS

Submersible pumps are commonly used in various industries such as construction, mining, wastewater treatment, agriculture, and general manufacturing. Typically, these pumps consist of a vertical electric drive motor that is directly connected to the impeller, and they are designed to operate for long periods with minimal maintenance.

BEARING ARRANGEMENT

The bottom bearing, also known as the locating bearing, usually consists of a double-row angular contact ball bearing or a pair of angular contact bearings, which are responsible for supporting the axial and radial loads generated by the pumped fluid. Since the bearing is subjected to heavy loads, it is important to select the appropriate bearing to achieve the desired service life. On the other hand, the top free bearing is generally a deep groove ball bearing that takes a light radial load. Typically, C3 clearance is used to compensate for the reduction in clearance caused by the heat generated by the electric motor.

CREEP PHENOMENON IN TOP BEARINGS

The lightly loaded top bearing is expected to have a long service life. However, sometimes, its life is significantly reduced due to creep. The combination of a light radial load and a loose fit in the housing can result in relative slippage between the outer ring and the housing. Creep is a phenomenon where surfaces that fit together move relative to each other, resulting in a polished bearing ring surface, which may be accompanied by scoring or wear.

COUNTERMEASURE

One popular countermeasure used by pump manufacturers is to machine an annular groove in the housing bore and insert an O-ring to prevent creep between the bearing's outer diameter and the housing.

NSK SOLUTION

NSK offers Creep-Free bearings that provide better creep prevention with their integrated double O-rings. These bearings offer submersible pump manufacturers the following advantages:

  • Excellent creep prevention.
  • Easy assembly as the Creep-Free bearings can be fitted with a loose housing bore tolerance
  • Reusable housing as very little abrasion occurs on the housing bore.
  • Cost savings as pump manufacturers do not need to machine a groove in the housing bore and insert their own O-ring.
Download NSK Pump and compressor bearings Brochure:


Hello there! If you're enjoying using our website and finding our articles helpful, we would really appreciate your support. With your help, we can continue to develop resources and provide you with even more valuable content. Thank you for your support.

Comments

Popular posts from this blog

Why Pump Shafts Often Break at the Keyway Area

By NTS Pump shaft failure can lead to significant downtime and repair costs in industrial plants. One of the most common locations for pump shaft failure is at the keyway area. In this article, we will explore the reasons why pump shafts often break at the keyway and what can be done to prevent such failures. The keyway is a high-stress point (weakest point)  on the shaft, where a key is inserted to transmit torque between the shaft and the pump impeller or coupling. During operation, the keyway experiences cyclic loading that creates a bending moment in the shaft, which is concentrated in the keyway area. Over time, this cyclic loading can cause fatigue failure in the shaft material, leading to a fracture at the keyway. In addition to cyclic loading, other factors can contribute to shaft failure at the keyway. Improper keyway design or installation can lead to stress concentrations or inadequate clearance between the key and keyway . Misalignment or overloading can also cause ex...

Grounding brush discharge monitoring

In recognition of the possibility of static charge build up in condensing steam turbines, API 612 (2005) specifies that grounding brushes be installed. The electrical flow to ground through these brushes  be monitored and useful information can be extracted. This article carries excerpts from the paper, “Babbitted bearing health assessment” by John K Whalen of John Crane, Thomas D Hess of Chestnut Run, Jim Allen of Nova Chemicals and Jack Craighton of Schneider Electric. Grounding brushes take current from the rotor to ground so that a charge does not build up on the rotor to the point where it discharges to ground though the best path possible – which is usually the closest point between the rotor and stator which is usually (hopefully) the point of minimum film thickness in a bearing. Typically this point of minimum film thickness is found in the active thrust bearing (as will be shown later). Shaft grounding brushes serve two purposes. The brushes are able to transmit modest amo...

Failures in babbit bearings

  There are literally dozens of ways bearings can fail. Some of the more common include: • Babbitt fatigue • Babbitt wiping due to rotor to stator contact • Babbitt flow due to high operating temperatures • Foreign particle damage • Varnish build-up • Electrostatic discharge damage (frosting) • Electromagnetic discharge damage (Spark tracks) • Oil “burn” or additive plating due to high temperatures • Loss of bond between babbitt and base metal • Chemical attack • Pivot wear in tilting pad bearings • Unloaded pad flutter • Cavitation damage This is taken from a paper, Babbitted bearing health assessment" by John Whalen of John Crane, Thomas Hess of Rotating Machinery Group, Jim Allen of Nova Chemicals Corporation and Jack Craighton of Schneider Electric. Babbitt fatigue Babbitt fatigue is caused by dynamic loads on the babbitt surface. Typically in bearings of this type, the dynamic loads are caused by vibration and result in peak film pressure fluct...

Failure investigation, remedies, and mitigation of a centrifugal pump.

  BY LUIS INFANTE & RODOLFO ALVARADO. A high energy pump at a water injection station in El Furrial, Venezuela exhibited extremely high vibration levels prior to an overhaul. It then suffered a catastrophic failure during startup following overhaul. The hydrodynamic bundle, rotor, and drive end (DE) bearing suffered damage.   High energy pump for boiler feed water. Courtesy of Flowserve. This centrifugal pump is a 3,000 HP, double-case volute, boiler feed water pump type. It has nine stages, outputs 750 gpm of water with suction pressure 1800 psi and discharge pressure 5250 psi. Rated speed was increased from 6000 to 6600 RPM to enhance the hydraulic performance. However, the pump’s actual discharge pressure was about 4,500 psi, well below the target value of 5,000 psi. The coupling was reportedly poorly fitted. The increased RPM created rotordynamic concerns of getting closer to a critical speed, thus the operator wanted to know about the synchronous regime. The...

John Crane's Type 28 Dry Gas Seals: How Does It Work?

How Does It Work? Highest Pressure Non-Contacting, Dry-Running Gas Seal Type 28 compressor dry-running gas seals have been the industry standard since the early 1980s for gas-handling turbomachinery. Supported by John Crane's patented design features, these seals are non-contacting in operation. During dynamic operation, the mating ring/seat and primary ring/face maintain a sealing gap of approximately 0.0002 in./5 microns, thereby eliminating wear. These seals eliminate seal oil contamination and reduce maintenance costs and downtime. John Crane's highly engineered Type 28 series gas seals incorporate patented spiral-groove technology, which provides the most efficient method for lifting and maintaining separation of seal faces during dynamic operation. Grooves on one side of the seal face direct gas inward toward a non-grooved portion of the face. The gas flowing across the face generates a pressure that maintains a minute gap between the faces, optimizing flui...