Skip to main content

The Defnition of Maintenance 4.0

Maintenance 4.0 is the application of Industry 4.0 to operations and maintenance (O&M) activities. The goal is simple: To maximize production uptime by eliminating unplanned, reactive maintenance. Let’s look at a simplistic depiction of common O&M work streams.

Figure 1 shows a graph depicting the activities that occur after an industrial asset unexpectedly fails.

 

Figure 1: O&M work streams in Industry 3.0 vs Industry 4.0

Once the failure event occurs and is reported, a series of activities occurs. First, repair crews are assigned and then travel to the worksite where they receive repair instructions. Parts must be ordered and transported to the site.

Typically, root cause analysis (RCA) is performed and valuable time expended on identifying it. Working under pressure to resume production, work crews engage in trial and error activities to identify the cause of the failure. After repairs and an inspection, production resumes.

Maintenance 4.0 brings artificial intelligence (AI) and machine learning (ML) to the production line. Instead of waiting for the equipment to fail, sophisticated algorithms are applied to big data from embedded sensors in the equipment. The algorithms are trained to identify correlated patterns of anomalous machine behavior and warn of evolving machine failure.

 


Figure 2: Core elements of Maintenance 4.0 (Source: Presenso).


 Figure 3: Cost comparison for storage, bandwidth and computing from 1991 to 2019 (Source: Deloitte Consulting)

Within Maintenance 4.0, AI-driven industrial analytics is the game changer.
Until recently, machine learning was a study confined mostly to academia. A confluence of multiple factors has lowered the cost of data transportation, bandwidth, storage and analysis. For example, data storage has fallen from five hundred and sixty-nine dollars per gigabyte in the early 1990s to less than one cent today.

 

Figure 4: Detection of evolving failures using machine learning (Source: Presenso)

 


Figure 1-5: Reactive maintenance processes (Source: Presenso)

As a result of the cost decline, machine learning can now be applied to vast amounts of sensor-generated big data that can be analyzed in real time.

The first component of Maintenance 4.0 is that while the failure is evolving, repairs can be scheduled and parts ordered. Tracing the failure to the original root cause eliminates guesswork and trial and error.

With Maintenance 4.0, machine uptime can be maintained while all non-repair activities are executed.

The second component of Maintenance 4.0 is the adoption of a computerized maintenance management system (CMMS) and automated workflows. Although a CMMS is not new, until now, its implementation has not been considered of strategic importance.

The third element of Maintenance 4.0 is the use of robotics and drones for inspections and repair activities.

In 2018, research was conducted to gain insight into industrial plants’ plans for the adoption of Maintenance 4.0. Figure 6 shows the results of that study.

Figure 6: Survey results regarding industrial plants’ plans for Maintenance 4.0 (Source: Emory University and Presenso)


Source:  https://industrial-ai.skf.com/the-maintenance-4-0-implementation-handbook-2/

Comments

Popular posts from this blog

Why Pump Shafts Often Break at the Keyway Area

By NTS Pump shaft failure can lead to significant downtime and repair costs in industrial plants. One of the most common locations for pump shaft failure is at the keyway area. In this article, we will explore the reasons why pump shafts often break at the keyway and what can be done to prevent such failures. The keyway is a high-stress point (weakest point)  on the shaft, where a key is inserted to transmit torque between the shaft and the pump impeller or coupling. During operation, the keyway experiences cyclic loading that creates a bending moment in the shaft, which is concentrated in the keyway area. Over time, this cyclic loading can cause fatigue failure in the shaft material, leading to a fracture at the keyway. In addition to cyclic loading, other factors can contribute to shaft failure at the keyway. Improper keyway design or installation can lead to stress concentrations or inadequate clearance between the key and keyway . Misalignment or overloading can also cause ex...

Corrosion Inhibiting Dry Film Lubricants

KEY TAKEAWAYS Dry film lubricants are able to face the challenge of providing the corrosion resistant lubrication required for machines operating in extreme conditions such as under heavy loads and at very high or low temperatures. From a lubrication point of view, extreme operational conditions may not commonly occur in every industry, but in some sectors such as defense and aerospace they are encountered quite often. These challenging conditions may include: Very high or very low temperatures Variable temperatures High or low surface speeds on shafts The presence of a vacuum Inaccessibility for maintenance or re-lubrication The presence of vibrations, extreme loads and stresses Contaminants generated by processes Petroleum-based lubricating substances work effectively only when: Operating temperatures are in the broad range of -4°F to 212°F (-20°C to 100°C) Tribology parameters enable the lubricant film to be formed within int...

Top 8 Reasons for Mechanical Seal Failure and How to Prevent Them

Mechanical seals are critical components of pumps, responsible for maintaining a fluid-tight seal between the rotating shaft and the stationary pump housing. However, these seals can fail due to various factors, leading to leakage, reduced pump efficiency, and costly downtime. In this article, we will discuss the top reasons for mechanical seal failure in pumps and how to prevent them. 1-Improper Seal Selection Choosing the wrong mechanical seal can cause it to fail. Consider the following factors that can contribute to seal failure: • Chemical compatibility: All seal components, such as the seal faces and O-rings, must be compatible not only with the process fluid being pumped, but also with non-process fluids used for cleaning, steam, acid, and caustic flushes, etc. • Physical degradation: Using soft seal faces on abrasive liquids will not last. Shear-sensitive liquids, like chocolate, can break down and leave behind solids (such as cocoa powder) and force out liquids (like oil). • S...

The 7 guiding principles of a Maintenance 4.0 strategy

Formulating a digital strategy is not easy, but these guidelines can help you get off the sidelines and into the game. By Eitan Vesely and Deddy Lavid (Ben lulu), Presenso It is not uncommon for organizations to struggle with many issues related to digitalization. With the hype around digitalization at fever pitch, it is easy to become overwhelmed by the multitude of options available in the marketplace. But the strongest contributing factor to implementation challenges is a failure to devise a strategy for an extensive period of uncertainty. Formulating a Maintenance 4.0 strategy is not easy. An aggressive strategy based on overinvesting in unproven technologies or a conservative strategy of merely waiting on the sidelines are unrealistic options. Guiding principles The seven guiding principles for a Maintenance 4.0 strategic plan are: 1. Invest based on the business case The primary obligation to shareholders does not change just because of the changes occurring within t...

Dry-Running Sealing Technology: Pump Applications (P2)

Solutions to Common Problems The operation of a single contacting seal would be difficult with any of the identified problems. A single contacting seal relies on cooling and lubrication from the process liquid being sealed. Any interruption in the cooling and lubrication processes will result in damage to the seal and leakage to the environment. The non-contacting, dry-running seal is a solution to many of the problems identified by users. An installation to a pump is illustrated in Figure 2. This type of pump seal technology does not require the circulation of liquid for cooling. Instead, a static heat of an inert gas is used to pressurize the space between the seals. Nitrogen gas in normally used to create the barrier between the process liquid and the environment. The gas barrier pressure is normally 20 to 30 psi/1.4 to 2 bar above the seal chamber pressure.  The spiral groove geometry of the seal face is responsible for lift-off and separation of the seal f...