Skip to main content

The Defnition of Maintenance 4.0

Maintenance 4.0 is the application of Industry 4.0 to operations and maintenance (O&M) activities. The goal is simple: To maximize production uptime by eliminating unplanned, reactive maintenance. Let’s look at a simplistic depiction of common O&M work streams.

Figure 1 shows a graph depicting the activities that occur after an industrial asset unexpectedly fails.

 

Figure 1: O&M work streams in Industry 3.0 vs Industry 4.0

Once the failure event occurs and is reported, a series of activities occurs. First, repair crews are assigned and then travel to the worksite where they receive repair instructions. Parts must be ordered and transported to the site.

Typically, root cause analysis (RCA) is performed and valuable time expended on identifying it. Working under pressure to resume production, work crews engage in trial and error activities to identify the cause of the failure. After repairs and an inspection, production resumes.

Maintenance 4.0 brings artificial intelligence (AI) and machine learning (ML) to the production line. Instead of waiting for the equipment to fail, sophisticated algorithms are applied to big data from embedded sensors in the equipment. The algorithms are trained to identify correlated patterns of anomalous machine behavior and warn of evolving machine failure.

 


Figure 2: Core elements of Maintenance 4.0 (Source: Presenso).


 Figure 3: Cost comparison for storage, bandwidth and computing from 1991 to 2019 (Source: Deloitte Consulting)

Within Maintenance 4.0, AI-driven industrial analytics is the game changer.
Until recently, machine learning was a study confined mostly to academia. A confluence of multiple factors has lowered the cost of data transportation, bandwidth, storage and analysis. For example, data storage has fallen from five hundred and sixty-nine dollars per gigabyte in the early 1990s to less than one cent today.

 

Figure 4: Detection of evolving failures using machine learning (Source: Presenso)

 


Figure 1-5: Reactive maintenance processes (Source: Presenso)

As a result of the cost decline, machine learning can now be applied to vast amounts of sensor-generated big data that can be analyzed in real time.

The first component of Maintenance 4.0 is that while the failure is evolving, repairs can be scheduled and parts ordered. Tracing the failure to the original root cause eliminates guesswork and trial and error.

With Maintenance 4.0, machine uptime can be maintained while all non-repair activities are executed.

The second component of Maintenance 4.0 is the adoption of a computerized maintenance management system (CMMS) and automated workflows. Although a CMMS is not new, until now, its implementation has not been considered of strategic importance.

The third element of Maintenance 4.0 is the use of robotics and drones for inspections and repair activities.

In 2018, research was conducted to gain insight into industrial plants’ plans for the adoption of Maintenance 4.0. Figure 6 shows the results of that study.

Figure 6: Survey results regarding industrial plants’ plans for Maintenance 4.0 (Source: Emory University and Presenso)


Source:  https://industrial-ai.skf.com/the-maintenance-4-0-implementation-handbook-2/

Comments

Popular posts from this blog

John Crane's Type 28 Dry Gas Seals: How Does It Work?

How Does It Work? Highest Pressure Non-Contacting, Dry-Running Gas Seal Type 28 compressor dry-running gas seals have been the industry standard since the early 1980s for gas-handling turbomachinery. Supported by John Crane's patented design features, these seals are non-contacting in operation. During dynamic operation, the mating ring/seat and primary ring/face maintain a sealing gap of approximately 0.0002 in./5 microns, thereby eliminating wear. These seals eliminate seal oil contamination and reduce maintenance costs and downtime. John Crane's highly engineered Type 28 series gas seals incorporate patented spiral-groove technology, which provides the most efficient method for lifting and maintaining separation of seal faces during dynamic operation. Grooves on one side of the seal face direct gas inward toward a non-grooved portion of the face. The gas flowing across the face generates a pressure that maintains a minute gap between the faces, optimizing flui...