Skip to main content

Residual Magnetism in High Speed Rotating Machinery.

Residual magnetism in high-speed machinery accounts for many previously unexplained machinery failures. In particular, the deterioration of bearings, seals, gears, couplings and journals has been attributed to electrical currents in machinery. Often, such trains or machinery groupings contain no components with electrical windings or intended magnetism, i.e., no motors or generators. The evolution of turbine and compressor systems towards high speeds and massive frames is acknowledged as the cause for a new source of trouble from magnetic fields.

An electrical generator converts mechanical power to electrical power through magnetic fields. A conventional generator rotor is essentially a magnet that is rotated in such a manner that its magnetic field flux passes through coils of windings. This produces an electrical voltage and power in the windings.

A turbine, compressor, or any other rotating machine that is magnetised behaves much the same way.

The magnetic steel parts provide a magnetic circuit, and are also electrically conducting so that voltages are generated, producing localised eddy currents and circulating currents. These currents will be either alternating or direct, and can spark or discharge across gaps and interfaces, resulting in erosion of component material in the form of frosting, spark tracks, and, in the extreme, melting and welding. They can cause increased temperatures and initiate severe bearing damage.


Fixed pad thrust bearing showing moderate amount of frosting due to spark erosion. Unit was equipped with OEM carbon brushes. (source: sohreturbo.com)

Typical frosting on bearing and seal area. This case is unusual in that frosting extended around only 1/2 of the circumference.(source: sohreturbo.com)

The field levels due to residual magnetism in turbo-machinery occur not from design but from manufacturing, testing, and environmental causes. They have been measured at the surface and in gaps of disassembled parts of a machine at levels ranging from a few gauss to thousands of gauss (1 Tesla = 10,000 Gauss). These increase significantly in the assembled machine where the magnetic material provides a good closed path for the magnetism and the air gaps between parts are reduced considerably. This combination can set up conditions for generation of notable stray voltages and the circulation or discharge of damaging currents.

There are a number of ways in which steel machinery parts can become magnetized. Placing a part in a strong magnetic field can leave substantial residual magnetism. Mechanical shock and high stressing of some materials can also initiate a residual field. Another method of creating residual magnetism is the passing of electrical current through the parts. In increasing order of their effect, following are the known examples: Electric system faults; nearby heavy electrical currents, such as rectified supplies and chemical processes; and lightning.

Electrostatic discharges, which are credited with causing bearing and seal pitting, can also play a role in magnetisation of shafts. The use of electrical welders and heaters on pipes and other parts is common and, if not used properly, will induce residual magnetism. Items that have been subjected to magnetic particle inspection often retain residual magnetism because of insufficient or improper demagnetizing techniques following the test. Components that have come in contact with magnetic chucks and magnetic bases often display multiple adjacent poles of a residual field

Comments

Popular posts from this blog

John Crane's Type 28 Dry Gas Seals: How Does It Work?

How Does It Work? Highest Pressure Non-Contacting, Dry-Running Gas Seal Type 28 compressor dry-running gas seals have been the industry standard since the early 1980s for gas-handling turbomachinery. Supported by John Crane's patented design features, these seals are non-contacting in operation. During dynamic operation, the mating ring/seat and primary ring/face maintain a sealing gap of approximately 0.0002 in./5 microns, thereby eliminating wear. These seals eliminate seal oil contamination and reduce maintenance costs and downtime. John Crane's highly engineered Type 28 series gas seals incorporate patented spiral-groove technology, which provides the most efficient method for lifting and maintaining separation of seal faces during dynamic operation. Grooves on one side of the seal face direct gas inward toward a non-grooved portion of the face. The gas flowing across the face generates a pressure that maintains a minute gap between the faces, optimizing flui...

Pump Shaft Breakage: Case Studies and Solutions

By NTS Pump shaft breakage is a common issue that can cause costly downtime and repairs in various industries. In this article, we will explore several case studies of pump shaft breakage and the solutions implemented to prevent future failures. Case Study 1: Chemical Processing Plant A chemical processing plant experienced repeated pump shaft breakages in their cooling water pumps. Investigation revealed that the pumps were not properly aligned with the motor and had excessive vibration due to the misalignment. This caused the pump shaft to fatigue and break over time. The problem was resolved by realigning the pumps and installing vibration monitoring equipment to detect any future misalignment or excessive vibration. Case Study 2: Wastewater Treatment Plant A wastewater treatment plant had issues with pump shaft breakage in their sludge pumps. The pumps were designed with a straight shaft and lacked a flexible coupling, causing excessive stress and vibration on the pump sha...

Motor Failures: Common causes and solutions

Bearing failures Bearings are small compared to other major motor components, making them particularly vulnerable to damage and wear. It’s no surprise, then, that studies blame more than half of all motor failures on bearing malfunction, most of which result from too little or too much lubrication. The key to avoiding these conditions is to establish a lubrication program using bearing and motor manufacturer guidelines to determine the frequency and amount of lubrication for the motor application, duty (continuous or intermittent), environmental conditions, and bearing size. Another significant cause of bearing failure is misalignment, the effect of which increases by the cube of the change. For example, an alignment value that is twice the new installation tolerance will reduce bearing life by a factor of 8 (2^3). The solution is simple: align the motor and driven equipment to new or better installation tolerances. Bearing currents are typically caused by dissymmetry ...

Why Pump Shafts Often Break at the Keyway Area

By NTS Pump shaft failure can lead to significant downtime and repair costs in industrial plants. One of the most common locations for pump shaft failure is at the keyway area. In this article, we will explore the reasons why pump shafts often break at the keyway and what can be done to prevent such failures. The keyway is a high-stress point (weakest point)  on the shaft, where a key is inserted to transmit torque between the shaft and the pump impeller or coupling. During operation, the keyway experiences cyclic loading that creates a bending moment in the shaft, which is concentrated in the keyway area. Over time, this cyclic loading can cause fatigue failure in the shaft material, leading to a fracture at the keyway. In addition to cyclic loading, other factors can contribute to shaft failure at the keyway. Improper keyway design or installation can lead to stress concentrations or inadequate clearance between the key and keyway . Misalignment or overloading can also cause ex...

Top 8 Reasons for Mechanical Seal Failure and How to Prevent Them

Mechanical seals are critical components of pumps, responsible for maintaining a fluid-tight seal between the rotating shaft and the stationary pump housing. However, these seals can fail due to various factors, leading to leakage, reduced pump efficiency, and costly downtime. In this article, we will discuss the top reasons for mechanical seal failure in pumps and how to prevent them. 1-Improper Seal Selection Choosing the wrong mechanical seal can cause it to fail. Consider the following factors that can contribute to seal failure: • Chemical compatibility: All seal components, such as the seal faces and O-rings, must be compatible not only with the process fluid being pumped, but also with non-process fluids used for cleaning, steam, acid, and caustic flushes, etc. • Physical degradation: Using soft seal faces on abrasive liquids will not last. Shear-sensitive liquids, like chocolate, can break down and leave behind solids (such as cocoa powder) and force out liquids (like oil). • S...