Skip to main content

Preventing Motor Bearing Damage from Shaft Current with the AEGIS® Ring

Electric motors are the workhorses of modern industry, powering everything from pumps and fans to conveyor belts and heavy machinery. But these vital components are not immune to wear and tear, and one common problem that can lead to premature motor failure is bearing damage caused by shaft current.

Shaft current is a type of electrical discharge that occurs when there is a voltage potential between the motor shaft and the bearing, resulting in the flow of electrical current through the bearing. This current can cause a range of problems, including pitting and fluting of the bearing surfaces, which can lead to premature wear and failure.


Shaft current

Motor shaft current can have several harmful effects on bearings, including:

1.    Bearing pitting and fluting: Electrical discharges can cause tiny pits and flutes to form on the bearing surfaces, leading to premature wear and failure.



2.     Bearing noise and vibration: Shaft current can cause the bearing to vibrate and produce a high-pitched noise, which can be annoying and distracting to operators.

3.     Increased maintenance and downtime: If bearings are damaged due to shaft current, they will need to be replaced or repaired, which can be time-consuming and costly.

4.  Reduced motor efficiency: Electrical arcing caused by shaft current can reduce motor efficiency and increase energy consumption, leading to higher operating costs.

5.  Safety hazards: In extreme cases, shaft current can create a safety hazard by causing sparks or explosions in explosive or hazardous environments.

The AEGIS® Ring is an effective solution for protecting bearings from the harmful effects of motor shaft current. 

The AEGIS® Ring protects the motors bearings and prevents fluting and bearing failure and the High-Frequency Ground Strap (HFGS) ensures a reliable path to system ground.

One solution to this problem is the AEGIS® Ring, a patented grounding device that is installed around the motor shaft to conduct harmful shaft voltages away from the bearings and safely to ground. The AEGIS® Ring is designed to prevent the buildup of static electricity on the shaft and divert any electrical discharges away from the bearings, protecting them from damage.

The AEGIS® Ring is made of a conductive microfiber material that creates a low-resistance path to ground, allowing electrical currents to flow safely away from the bearings. It is easy to install and can be retrofitted to existing motors, making it a cost-effective solution for preventing motor failure due to shaft current.

Grounding Path
The AEGIS® Ring conducts harmful shaft voltages away from the bearings to ground. Voltage travels from the shaft , through the conductive microfibers, through the housing of the ring, through the hardware (or conductive epoxy) used to attach the ring to the motor, to ground

In addition to protecting bearings from damage, the AEGIS® Ring can also improve motor performance by reducing the risk of electrical arcing and noise. By ensuring that the electrical current flows safely through the AEGIS® Ring, rather than through the bearing surfaces, the device can help to reduce wear and tear on the motor and extend its overall lifespan.

Overall, the AEGIS® Ring is an effective solution for protecting motors from the damaging effects of shaft current. By providing a low-resistance path to ground for electrical currents, the AEGIS® Ring can help to prevent premature bearing failure and improve motor performance, making it an essential tool for industrial maintenance and reliability professionals.

For further information, you can obtain the Bearing Protection Handbook by downloading it.


Hello there! If you're enjoying using our website and finding our articles helpful, we would really appreciate your support. With your help, we can continue to develop resources and provide you with even more valuable content.

Thank you for your support.

Comments

Popular posts from this blog

Why Pump Shafts Often Break at the Keyway Area

By NTS Pump shaft failure can lead to significant downtime and repair costs in industrial plants. One of the most common locations for pump shaft failure is at the keyway area. In this article, we will explore the reasons why pump shafts often break at the keyway and what can be done to prevent such failures. The keyway is a high-stress point (weakest point)  on the shaft, where a key is inserted to transmit torque between the shaft and the pump impeller or coupling. During operation, the keyway experiences cyclic loading that creates a bending moment in the shaft, which is concentrated in the keyway area. Over time, this cyclic loading can cause fatigue failure in the shaft material, leading to a fracture at the keyway. In addition to cyclic loading, other factors can contribute to shaft failure at the keyway. Improper keyway design or installation can lead to stress concentrations or inadequate clearance between the key and keyway . Misalignment or overloading can also cause ex...

Corrosion Inhibiting Dry Film Lubricants

KEY TAKEAWAYS Dry film lubricants are able to face the challenge of providing the corrosion resistant lubrication required for machines operating in extreme conditions such as under heavy loads and at very high or low temperatures. From a lubrication point of view, extreme operational conditions may not commonly occur in every industry, but in some sectors such as defense and aerospace they are encountered quite often. These challenging conditions may include: Very high or very low temperatures Variable temperatures High or low surface speeds on shafts The presence of a vacuum Inaccessibility for maintenance or re-lubrication The presence of vibrations, extreme loads and stresses Contaminants generated by processes Petroleum-based lubricating substances work effectively only when: Operating temperatures are in the broad range of -4°F to 212°F (-20°C to 100°C) Tribology parameters enable the lubricant film to be formed within int...

Top 8 Reasons for Mechanical Seal Failure and How to Prevent Them

Mechanical seals are critical components of pumps, responsible for maintaining a fluid-tight seal between the rotating shaft and the stationary pump housing. However, these seals can fail due to various factors, leading to leakage, reduced pump efficiency, and costly downtime. In this article, we will discuss the top reasons for mechanical seal failure in pumps and how to prevent them. 1-Improper Seal Selection Choosing the wrong mechanical seal can cause it to fail. Consider the following factors that can contribute to seal failure: • Chemical compatibility: All seal components, such as the seal faces and O-rings, must be compatible not only with the process fluid being pumped, but also with non-process fluids used for cleaning, steam, acid, and caustic flushes, etc. • Physical degradation: Using soft seal faces on abrasive liquids will not last. Shear-sensitive liquids, like chocolate, can break down and leave behind solids (such as cocoa powder) and force out liquids (like oil). • S...

The 7 guiding principles of a Maintenance 4.0 strategy

Formulating a digital strategy is not easy, but these guidelines can help you get off the sidelines and into the game. By Eitan Vesely and Deddy Lavid (Ben lulu), Presenso It is not uncommon for organizations to struggle with many issues related to digitalization. With the hype around digitalization at fever pitch, it is easy to become overwhelmed by the multitude of options available in the marketplace. But the strongest contributing factor to implementation challenges is a failure to devise a strategy for an extensive period of uncertainty. Formulating a Maintenance 4.0 strategy is not easy. An aggressive strategy based on overinvesting in unproven technologies or a conservative strategy of merely waiting on the sidelines are unrealistic options. Guiding principles The seven guiding principles for a Maintenance 4.0 strategic plan are: 1. Invest based on the business case The primary obligation to shareholders does not change just because of the changes occurring within t...

Dry-Running Sealing Technology: Pump Applications (P2)

Solutions to Common Problems The operation of a single contacting seal would be difficult with any of the identified problems. A single contacting seal relies on cooling and lubrication from the process liquid being sealed. Any interruption in the cooling and lubrication processes will result in damage to the seal and leakage to the environment. The non-contacting, dry-running seal is a solution to many of the problems identified by users. An installation to a pump is illustrated in Figure 2. This type of pump seal technology does not require the circulation of liquid for cooling. Instead, a static heat of an inert gas is used to pressurize the space between the seals. Nitrogen gas in normally used to create the barrier between the process liquid and the environment. The gas barrier pressure is normally 20 to 30 psi/1.4 to 2 bar above the seal chamber pressure.  The spiral groove geometry of the seal face is responsible for lift-off and separation of the seal f...