Skip to main content

Preventing Motor Bearing Damage from Shaft Current with the AEGIS® Ring

Electric motors are the workhorses of modern industry, powering everything from pumps and fans to conveyor belts and heavy machinery. But these vital components are not immune to wear and tear, and one common problem that can lead to premature motor failure is bearing damage caused by shaft current.

Shaft current is a type of electrical discharge that occurs when there is a voltage potential between the motor shaft and the bearing, resulting in the flow of electrical current through the bearing. This current can cause a range of problems, including pitting and fluting of the bearing surfaces, which can lead to premature wear and failure.


Shaft current

Motor shaft current can have several harmful effects on bearings, including:

1.    Bearing pitting and fluting: Electrical discharges can cause tiny pits and flutes to form on the bearing surfaces, leading to premature wear and failure.



2.     Bearing noise and vibration: Shaft current can cause the bearing to vibrate and produce a high-pitched noise, which can be annoying and distracting to operators.

3.     Increased maintenance and downtime: If bearings are damaged due to shaft current, they will need to be replaced or repaired, which can be time-consuming and costly.

4.  Reduced motor efficiency: Electrical arcing caused by shaft current can reduce motor efficiency and increase energy consumption, leading to higher operating costs.

5.  Safety hazards: In extreme cases, shaft current can create a safety hazard by causing sparks or explosions in explosive or hazardous environments.

The AEGIS® Ring is an effective solution for protecting bearings from the harmful effects of motor shaft current. 

The AEGIS® Ring protects the motors bearings and prevents fluting and bearing failure and the High-Frequency Ground Strap (HFGS) ensures a reliable path to system ground.

One solution to this problem is the AEGIS® Ring, a patented grounding device that is installed around the motor shaft to conduct harmful shaft voltages away from the bearings and safely to ground. The AEGIS® Ring is designed to prevent the buildup of static electricity on the shaft and divert any electrical discharges away from the bearings, protecting them from damage.

The AEGIS® Ring is made of a conductive microfiber material that creates a low-resistance path to ground, allowing electrical currents to flow safely away from the bearings. It is easy to install and can be retrofitted to existing motors, making it a cost-effective solution for preventing motor failure due to shaft current.

Grounding Path
The AEGIS® Ring conducts harmful shaft voltages away from the bearings to ground. Voltage travels from the shaft , through the conductive microfibers, through the housing of the ring, through the hardware (or conductive epoxy) used to attach the ring to the motor, to ground

In addition to protecting bearings from damage, the AEGIS® Ring can also improve motor performance by reducing the risk of electrical arcing and noise. By ensuring that the electrical current flows safely through the AEGIS® Ring, rather than through the bearing surfaces, the device can help to reduce wear and tear on the motor and extend its overall lifespan.

Overall, the AEGIS® Ring is an effective solution for protecting motors from the damaging effects of shaft current. By providing a low-resistance path to ground for electrical currents, the AEGIS® Ring can help to prevent premature bearing failure and improve motor performance, making it an essential tool for industrial maintenance and reliability professionals.

For further information, you can obtain the Bearing Protection Handbook by downloading it.


Hello there! If you're enjoying using our website and finding our articles helpful, we would really appreciate your support. With your help, we can continue to develop resources and provide you with even more valuable content.

Thank you for your support.

Comments

Popular posts from this blog

Why Pump Shafts Often Break at the Keyway Area

By NTS Pump shaft failure can lead to significant downtime and repair costs in industrial plants. One of the most common locations for pump shaft failure is at the keyway area. In this article, we will explore the reasons why pump shafts often break at the keyway and what can be done to prevent such failures. The keyway is a high-stress point (weakest point)  on the shaft, where a key is inserted to transmit torque between the shaft and the pump impeller or coupling. During operation, the keyway experiences cyclic loading that creates a bending moment in the shaft, which is concentrated in the keyway area. Over time, this cyclic loading can cause fatigue failure in the shaft material, leading to a fracture at the keyway. In addition to cyclic loading, other factors can contribute to shaft failure at the keyway. Improper keyway design or installation can lead to stress concentrations or inadequate clearance between the key and keyway . Misalignment or overloading can also cause ex...

John Crane's Type 28 Dry Gas Seals: How Does It Work?

How Does It Work? Highest Pressure Non-Contacting, Dry-Running Gas Seal Type 28 compressor dry-running gas seals have been the industry standard since the early 1980s for gas-handling turbomachinery. Supported by John Crane's patented design features, these seals are non-contacting in operation. During dynamic operation, the mating ring/seat and primary ring/face maintain a sealing gap of approximately 0.0002 in./5 microns, thereby eliminating wear. These seals eliminate seal oil contamination and reduce maintenance costs and downtime. John Crane's highly engineered Type 28 series gas seals incorporate patented spiral-groove technology, which provides the most efficient method for lifting and maintaining separation of seal faces during dynamic operation. Grooves on one side of the seal face direct gas inward toward a non-grooved portion of the face. The gas flowing across the face generates a pressure that maintains a minute gap between the faces, optimizing flui...

What are KPIs?

A key performance indicator (KPI) is a specific measure of an organization's performance in some area of its business. It is a very general concept, with different implementations depending on the type of business and goals of the organization. Examples of KPIs may include such things as the percentage of deliveries made on time, total inventory at any given time, distribution costs as a percentage of total sales, accuracy of invoices sent to clients, or lead time for a product. The purpose of KPIs is to give a business quantifiable measurements of things it has determined are important to its long-term success. Identifying the most important KPIs is the first step towards realizing increased profitability and efficiency for most businesses. For KPIs to be useful, they must be consistently quantifiable, have an established correlation to the area of the business in need of improvement, and not give false readings. - KPIs are utilised to track or measure actual perfor...

FACTORS IMPACTING COMPRESSOR SURGE

BY AMIN ALMASI. Surge can be a major challenge for turbo compressors. Operation in the surge area will result in instability, exposing the machine to destructive stresses and forces, high vibration, and even serious damage. Surge during shutdown (trip) has been reported for many turbo-compressors. This is particularly possible if the machine operates at high head and low flow, immediately before the trip, when the operating point can move toward the surge line and even pass it during coast-down (when the turbo-compressor reduces flowrate). When a turbo-compressor experiences a serious alarm, an emergency shutdown is usually initiated. But an immediate shutdown could result in a surge. In this case, the surge happens shortly after the shutdown (trip) and at a high energy level. This could be a surge at a high head (operating point could pass the surge line at high head). In many cases, there are advantages to not removing the driving power from the turbocompressor (tripping) immediately...